Publicaciones de investigación de Google Health
Publicar nuestro trabajo nos permite compartir ideas y trabajar de manera colaborativa para avanzar en el cuidado de la salud. Esta es una vista completa de nuestras publicaciones y entradas de blog asociadas.
-
entradas de blog [más en Blog The Keyword de Google & Blog de Google Research]
How we’re using AI to connect people to health informationby Karen DeSalvo
-
entradas de blog
How AI is helping advance women’s health around the worldby Ronit Levavi Morad & Preeti Singh
-
entradas de blog
A new commitment to digital wellbeing for kids and teensby Karen DeSalvo
-
entradas de blog
3 predictions for AI in healthcare in 2024by Aashima Gupta
-
entradas de blog
2023: A year of groundbreaking advances in AI and computingby Jeff Dean, James Manyika, & Demis Hassabis
-
entradas de blog
23 of our biggest moments in 2023by Molly McHugh-Johnson
-
entradas de blog
4 ways we think about health equity and AIby Ivor Horn
-
entradas de blog
5 ways Google is accelerating Health AI innovation in Africaby Yossi Mattia Shravya Shetty
-
entradas de blog
How we’re using AI to help transform healthcareby Yossi Mattias
-
entradas de blog
A new collaboration to improve nutrition informationby Nira Goren
-
entradas de blog
HLTH 2023: Bringing AI to health responsiblyby Michaell Howell
-
entradas de blog
How AI can improve health for everyone, everywhereby Karen DeSalvo
-
entradas de blog
7 ways Google Health is improving outcomes in Asia Pacificby Karen DeSalvo
-
entradas de blog [más en Blog The Keyword de Google & Blog de Google AI]
Looking to the next 75 years of the NHSby Susan Thomas
-
entradas de blog
New research from the UK focused on technology’s role in healthcareby Susan Thomas
-
entradas de blog
Our collaboration with WHO to improve public healthby Karen DeSalvo
-
entradas de blog
Partnering with startups using AI to improve healthcareby Karen DeSalvo
-
entradas de blog
More mental health resources for the moments you need themby Megan Jones Bell
-
entradas de blog
3 ways Google products can help you feel less stressedby Megan Jones Bell
-
entradas de blog
New ways we’re helping people live healthier livesby Karen DeSalvo
-
entradas de blog
Our latest health AI research updatesby Greg Corrado & Yossi Matias
-
entradas de blog
Google Research, 2022 & beyond: Healthby Greg Corrado & Yossi Matias
-
entradas de blog
Meet our Health Equity Research Initiative awardeesby Ivor Horn
-
entradas de blog
7 ways Google is using AI to help solve society's challengesby Katie Malczyk
-
entradas de blog
3 ways to take better care of your mind and body in 2023by Megan Jones Bell
-
entradas de blog
8 things we launched in 2022 to support your healthby Iz Conroy
-
entradas de blog
How to use Google Search to help manage uncertain timesby Hema Budaraju
-
entradas de blog
Unlocking the potential of technology to support healthby Karen DeSalvo
-
entradas de blog
Healthy collaboration: Why partnerships are the heart of healthcare innovationby Aashima Gupta
-
entradas de blog
3 ways AI is scaling helpful technologies worldwideby Jeff Dean
-
entradas de blog
Democratizing access to healthby Karen DeSalvo
-
entradas de blog
Google Assistant offers information and hope for Breast Cancer Awareness Monthby Riva Sciuto
-
entradas de blog
Our work toward health equityby Ivor Horn
-
entradas de blog
Dr. Von Nguyen’s temperature check on public healthby Lauren Winer
-
entradas de blog
Suicide prevention resources on Google Searchby Anne Merritt
-
entradas de blog
Mental health resources you can count onby Megan Jones Bell
-
entradas de blog
Raising awareness of the dangers of fentanylby Megan Jones Bell & Garth Graham
-
entradas de blog
The Check Up: helping people live healthier livesby Karen DeSalvo
-
entradas de blog
The Check Up: our latest health AI developmentsby Greg Corrado
-
entradas de blog
Extending Care Studio with a new healthcare partnershipby Paul Muret
-
entradas de blog
Take a look at Conditions, our new feature in Care Studioby Paul Muret
-
entradas de blog
Google Research: Themes from 2021 and Beyondby Jeff Dean
-
entradas de blog
Making healthcare options more accessible on Searchby Hema Budaraju
-
entradas de blog
HLTH: Building on our commitments in healthby Karen DeSalvo
-
entradas de blog
When it comes to mental health, what are we searching for?by Alicia Cormie
-
entradas de blog
Dr. Ivor Horn talks about technology and health equityby Alicia Cormie
-
entradas de blog
Our Care Studio pilot is expanding to more cliniciansby Paul Muret
-
entradas de blog
Google Research: Looking Back at 2020, and Forward to 2021by Jeff Dean
-
entradas de blog
A new Google Search tool to support women with postpartum depressionby David Feinberg
-
entradas de blog
Prepare for medical visits with help from Google and AHRQby Dave Greenwood
-
entradas de blog
A Collaborative Approach to Shaping Successful UX Critique Practicesby Anna Lurchenko
-
entradas de blog
Learn more about anxiety with a self-assessment on Searchby Daniel Gillison, Jr
-
entradas de blog
Google Research: Looking Back at 2019, and Forward to 2020 and Beyondby Jeff Dean
-
entradas de blog
Lessons Learned from Developing ML for Healthcareby Yun Liu & Po-Hsuan Cameron Chen
-
entradas de blog
Tools to help healthcare providers deliver better careby David Feinberg
-
entradas de blog
Breast cancer and tech...a reason for optimismby Ruth Porat
-
entradas de blog
DeepMind’s health team joins Google Healthby Dominic King
-
entradas de blog
Looking Back at Google’s Research Efforts in 2018by Jeff Dean
-
entradas de blog
Meet David Feinberg, head of Google Healthby Google
-
entradas de blog
AI for Social Good in Asia Pacificby Kent Walter
-
entradas de blog
The Google Brain Team — Looking Back on 2017 (Part 2 of 2)by Jeff Dean
-
entradas de blog
Gain a deeper understanding of Posttraumatic Stress Disorder on Googleby Paula Schnurr & Teri Brister
-
entradas de blog
Learning more about clinical depression with the PHQ-9 questionnaireby Mary Giliberti
-
entradas de blog
Partnering on machine learning in healthcareby Katherine Chou
-
entradas de blog
The Google Brain Team — Looking Back on 2016by Jeff Dean
-
entradas de blog sobre covid-19
Supporting evolving COVID information needsby Hema Budaraju
-
entradas de blog sobre covid-19 [más en Blog The Keyword de Google]
Group effort: How we helped launch an NYC vaccine siteby Lauren Gallagher
-
entradas de blog sobre covid-19 [más en Blog The Keyword de Google]
This year, we searched for ways to stay healthyby Hema Budaraju
-
entradas de blog sobre covid-19
New tools to support vaccine access and distributionby Tomer Shekel
-
entradas de blog sobre covid-19
An update on our COVID response prioritiesby the COVID Response team, Google India
-
entradas de blog sobre covid-19
Our commitment to COVID-19 vaccine equityby Karen DeSalvo
-
entradas de blog sobre covid-19
How anonymized data helps fight against diseaseby Stephen Ratcliffe
-
entradas de blog sobre covid-19
How we’re helping get vaccines to more peopleby Sundar Pichai
-
entradas de blog sobre covid-19
Exposure Notifications: end of year updateby Steph Hannon
-
entradas de blog sobre covid-19
How you'll find accurate and timely information on COVID-19 vaccinesby Karen DeSalvo & Kristie Canegallo
-
entradas de blog sobre covid-19
How I’m giving thanks (and staying safe) this Thanksgivingby Karen DeSalvo
-
entradas de blog sobre covid-19
A Q&A on coronavirus vaccinesGoogle Keyword Blog
-
entradas de blog sobre covid-19
An update on our efforts to help Americans navigate COVID-19by Ruth Porat
-
entradas de blog sobre covid-19
Making data useful for public healthby Katherine Chou
-
entradas de blog sobre covid-19
Google supports COVID-19 AI and data analytics projectsby Mollie Javerbaum & Meghan Houghton
-
entradas de blog sobre covid-19
Using symptoms search trends to inform COVID-19 researchby Evgeniy Gabrilovich
-
entradas de blog sobre covid-19
An update on Exposure Notificationsby Dave Burke
-
entradas de blog sobre covid-19
Exposure Notification API launches to support public health agenciesby Apple & Google
-
entradas de blog sobre covid-19
Dr. Karen DeSalvo on ‘putting information first’ during COVID-19by Megan Washam
-
entradas de blog sobre covid-19
Resources for mental health support during COVID-19by David Feinberg
-
entradas de blog sobre covid-19
Helping you avoid COVID-19 online security risksGoogle Africa Blog
-
entradas de blog sobre covid-19
Apple and Google partner on COVID-19 contact tracing technologyby Apple & Google
-
entradas de blog sobre covid-19
Connecting people to virtual care optionsby Julie Black
-
entradas de blog sobre covid-19
Support for public health workers fighting COVID-19by Karen DeSalvo
-
entradas de blog sobre covid-19
Helping public health officials combat COVID-19by Jen Fitzpatrick & Karen DeSalvo
-
entradas de blog sobre covid-19
Connecting people with COVID-19 information and resourcesby Emily Moxley
-
entradas de blog sobre covid-19
COVID-19: How we’re continuing to helpby Sundar Pichai
-
entradas de blog sobre covid-19
Coronavirus: How we’re helpingby Sundar Pichai
-
revisiones
The opportunities and risks of large language models in mental healthLawrence, H. R., Schneider, R. A., Rubin, S. B., Mataric, M. J., McDuff, D. J. & Bell, M. J.
-
revisiones
Information is a determinant of healthGraham, G., Goren, N., Sounderajah, V. & DeSalvo, K.
-
revisiones
An intentional approach to managing bias in general purpose embedding modelsWeng, W.-H., Sellergen, A., Kiraly, A. P., D’Amour, A., Park, J., Pilgrim, R., Pfohl, S., Lau, C., Natarajan, V., Azizi, S., Karthikesalingam, A., Cole-Lewis, H., Matias, Y., Corrado, G. S., Webster, D. R., Shetty, S., Prabhakara, S., Eswaran, K., Celi, L. A. G. & Liu, Y.
-
revisiones
Three Epochs of Artificial Intelligence in Health CareHowell M., Corrado G., DeSalvo K.
-
revisiones
Artificial intelligence in healthcare: a perspective from GoogleLehmann, L. S., Natarajan, V. & Peng, L. Chapter 39
-
revisiones
Explaining counterfactual imagesLang, O., Traynis, I. & Liu, Y.
-
revisiones
Beyond Predictions: Explainability and Learning from Machine LearningDeng, C.-Y., Mitani, A., Chen, C. W., Peng, L. H., Hammel, N. & Liu, Y
-
revisiones
Deep Learning for Epidemiologists: An introduction to neural networks.Serghiou, S. & Rough, K.
-
revisiones
Building a Clinical Team in a Large Technology Company.DeSalvo Karen B. & Howell Michael D.
-
revisiones
Medicine’s Role in Reimagining Public Health: Reuniting Panacea and HygeiaDeSalvo, K. B., Kadakia, K. T. & Chokshi, D. A.
-
revisiones
Modernizing Public Health Data Systems: Lessons From the Health Information Technology for Economic and Clinical Health (HITECH) ActKadakia, K. T., Howell, M. D. & DeSalvo, K. B.
-
revisiones
Public Health 3.0 After COVID-19-Reboot or Upgrade?DeSalvo, K. B. & Kadakia, K. T.
-
revisiones
A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AISounderajah, V., Ashrafian, H., Rose, S., Shah, N. H., Ghassemi, M., Golub, R., Kahn, C. E., Jr, Esteva, A., Karthikesalingam, A., Mateen, B., Webster, D., Milea, D., Ting, D., Treanor, D., Cushnan, D., King, D., McPherson, D., Glocker, B., Greaves, F., Harling, L., Ordish, J., Cohen, J. F., Deeks, J., Leeflang, M., Diamond, M., McInnes, M. D. F., McCradden, M., Abràmoff, M. D., Normahani, P., Markar, S. R., Chang, S., Liu, X., Mallett, S., Shetty, S., Denniston, A., Collins, G. S., Moher, D., Whiting, P., Bossuyt, P. M. & Darzi, A.
-
revisiones
Evaluation of artificial intelligence on a reference standard based on subjective interpretationChen, P.-H. C., Mermel, C. H. & Liu, Y.
-
revisiones
Artificial Intelligence in MedicineKelly, C. J., Brown, A. P. Y. & Taylor, J. A.
-
revisiones
Challenges of Accuracy in Germline Clinical Sequencing DataPoplin, R., Zook, J. M. & DePristo, M.
-
revisiones
Retinal detection of kidney disease and diabetesMitani, A., Hammel, N. & Liu, Y.
-
revisiones
Deep learning-enabled medical computer visionEsteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J. & Socher, R.
-
revisiones
Closing the translation gap: AI applications in digital pathologySteiner, D. F., Chen, P.-H. C. & Mermel, C. H.
-
revisiones
Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographsLiu, Y., Yang, L., Phene, S. & Peng, L.
-
revisiones
Resonate: Reaching Excellence Through Equity, Diversity, and Inclusion in ISMRMWarnert, E. A. H., Kasper, L., Meltzer, C. C., Lightfoote, J. B., Bucknor, M. D., Haroon, H., Duggan, G., Gowland, P., Wald, L., Miller, K. L., Morris, E. A. & Anazodo, U. C.
-
revisiones
Current and future applications of artificial intelligence in pathology: a clinical perspectiveRakha, E. A., Toss, M., Shiino, S., Gamble, P., Jaroensri, R., Mermel, C. H. & Chen, P.-H. C.
-
revisiones
Artificial intelligence, machine learning and deep learning for eye care specialistsSayres, R., Hammel, N. & Liu, Y.
-
revisiones
Artificial intelligence in digital breast pathology: Techniques and applicationsIbrahim, A., Gamble, P., Jaroensri, R., Abdelsamea, M. M., Mermel, C. H., Chen, P.-H. C. & Rakha, E. A.
-
revisiones
How to Read Articles That Use Machine Learning: Users’ Guides to the Medical LiteratureLiu, Y., Chen, P.-H. C., Krause, J. & Peng, L.
-
revisiones
Key challenges for delivering clinical impact with artificial intelligenceKelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D.
-
revisiones
Ensuring Fairness in Machine Learning to Advance Health EquityRajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H.
-
revisiones
Artificial Intelligence Approach in MelanomaCuriel-Lewandrowski, C., Novoa, R. A., Berry, E., Celebi, M. E., Codella, N., Giuste, F., Gutman, D., Halpern, A., Leachman, S., Liu, Y., Liu, Y., Reiter, O. & Tschandl, P.
-
revisiones
How to develop machine learning models for healthcareChen, C. P.-H., Liu, Y., & Peng, L.
-
revisiones
Machine Learning in MedicineRajkomar, A., Dean, J., & Kohane I.
-
revisiones
A guide to deep learning in healthcareEsteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S. & Dean, J.
-
revisiones
When does size matter? -- Promises, pitfalls, and appropriate interpretations of ‘big’ dataRough K, Thompson J.
-
revisiones
Resolving the Productivity Paradox of Health Information Technology: A Time for OptimismWachter, R. M., Howell, M. D.
-
entradas de blog
Developing reliable AI tools for healthcareby Krishnamurthy (Dj) Dvijotham & Taylan Cemgil
-
entradas de blog
Robust and efficient medical imaging with self-supervisionby Shekoofeh Azizi & Laura Culp
-
entradas de blog
How Underspecification Presents Challenges for Machine Learningby Alex D’Amour & Katherine Heller
-
entradas de blog
Self-Supervised Learning Advances Medical Image Classificationby Shekoofeh Azizi
-
publicaciones
Understanding metric-related pitfalls in image analysis validationReinke, A., Tizabi, M. D., Baumgartner, M., Eisenmann, M., Heckmann-Nötzel, D., Kavur, A. E., Rädsch, T., Sudre, C. H., Acion, L., Antonelli, M., Arbel, T., Bakas, S., Benis, A., Buettner, F., Cardoso, M. J., Cheplygina, V., Chen, J., Christodoulou, E., Cimini, B. A., Farahani, K., Ferrer, L., Galdran, A., van Ginneken, B., Glocker, B., Godau, P., Hashimoto, D. A., Hoffman, M. M., Huisman, M., Isensee, F., Jannin, P., Kahn, C. E., Kainmueller, D., Kainz, B., Karargyris, A., Kleesiek, J., Kofler, F., Kooi, T., Kopp-Schneider, A., Kozubek, M., Kreshuk, A., Kurc, T., Landman, B. A., Litjens, G., Madani, A., Maier-Hein, K., Martel, A. L., Meijering, E., Menze, B., Moons, K. G. M., Müller, H., Nichyporuk, B., Nickel, F., Petersen, J., Rafelski, S. M., Rajpoot, N., Reyes, M., Riegler, M. A., Rieke, N., Saez-Rodriguez, J., Sánchez, C. I., Shetty, S., Summers, R. M., Taha, A. A., Tiulpin, A., Tsaftaris, S. A., Van Calster, B., Varoquaux, G., Yaniv, Z. R., Jäger, P. F. & Maier-Hein, L.
-
publicaciones
Detecting shortcut learning for fair medical AI using shortcut testingBrown, A., Tomasev, N., Freyberg, J., Liu, Y., Karthikesalingam, A. & Schrouff, J.
-
publicaciones
Enhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to cliniciansDvijotham, K., Winkens, J., Barsbey, M., Ghaisas, S., Stanforth, R., Pawlowski, N., Strachan, P., Ahmed, Z., Azizi, S., Bachrach, Y., Culp, L., Daswani, M., Freyberg, J., Kelly, C., Kiraly, A., Kohlberger, T., McKinney, S., Mustafa, B., Natarajan, V., Geras, K., Witowski, J., Qin, Z. Z., Creswell, J., Shetty, S., Sieniek, M., Spitz, T., Corrado, G., Kohli, P., Cemgil, T. & Karthikesalingam, A.
-
publicaciones
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imagingAzizi, S., Culp, L., Freyberg, J., Mustafa, B., Baur, S., Kornblith, S., Chen, T., Tomasev, N., Mitrović, J., Strachan, P., Mahdavi, S. S., Wulczyn, E., Babenko, B., Walker, M., Loh, A., Chen, P.-H. C., Liu, Y., Bavishi, P., McKinney, S. M., Winkens, J., Roy, A. G., Beaver, Z., Ryan, F., Krogue, J., Etemadi, M., Telang, U., Liu, Y., Peng, L., Corrado, G. S., Webster, D. R., Fleet, D., Hinton, G., Houlsby, N., Karthikesalingam, A., Norouzi, M. & Natarajan, V.
-
publicaciones
Diagnosing failures of fairness transfer across distribution shift in real-world medical settingsSchrouff, J., Harris, N., Koyejo, O. O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A., Heller, K. A., Chiappa, S. & D’Amour, A.
-
publicaciones
Comparing human and AI performance in medical machine learning: An open-source Python library for the statistical analysis of reader study dataMcKinney, S. M.
-
publicaciones
Iterative Quality Control Strategies for Expert Medical Image LabelingFreeman, B., Hammel, N., Phene, S., Huang, A., Ackermann, R., Kanzheleva, O., Hutson, M., Taggart, C., Duong, Q. & Sayres, R.
-
publicaciones
Big Self-Supervised Models Advance Medical Image ClassificationAzizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
-
publicaciones
Privacy-first health research with federated learningSadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M., Serghiou, S., Rader, B., Ingerman, A., Mellem, S., Kairouz, P., Nsoesie, E. O., MacFarlane, J., Vullikanti, A., Marathe, M., Eastham, P., Brownstein, J. S., Arcas, B. A. Y., Howell, M. D. & Hernandez, J.
-
publicaciones
Supervised Transfer Learning at Scale for Medical ImagingMustafa, B., Loh, A., Freyberg, J., MacWilliams, P., Karthikesalingam, A., Houlsby, N. & Natarajan, V.
-
publicaciones
Big Self-Supervised Models Advance Medical Image ClassificationAzizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
-
publicaciones
Underspecification Presents Challenges for Credibility in Modern Machine LearningD’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X. & Sculley, D.
-
publicaciones
Contrastive Training for Improved Out-of-Distribution DetectionWinkens, J., Bunel, R., Roy, A. G., Stanforth, R., Natarajan, V., Ledsam, J. R., MacWilliams, P., Kohli, P., Karthikesalingam, A., Kohl, S., Cemgil, T., Ali Eslami, S. M. & Ronneberger, O.
-
publicaciones
Customization scenarios for de-identification of clinical notesHartman, T., Howell, M., Dean, J., Hoory, S., Slyper, R., Laish, I., Gilon, O, Vainstein, D., Corrado, G., Chou, K., Po, M., Williams, J., Ellis, S., Bee, G., Hassidim, A., Amira, R., Beryozkin, G., Szpektor, I., & Matias, Y.
-
entradas de blog
How we’re using AI to connect people to health information -
entradas de blog
3 ways we are building equity into our health workby Ivor Horn
-
entradas de blog
SCIN: A new resource for representative dermatology imagesby Pooja Rao
-
entradas de blog
HEAL: A framework for health equity assessment of machine learning performanceby Mike Schaekermann & Ivor Horn
-
entradas de blog
Health-specific embedding tools for dermatology and pathologyby Dave Steiner & Rory Pilgrim
-
entradas de blog
7 ways Google Health is improving outcomes in Asia Pacificby Karen DeSalvo
-
entradas de blog
8 ways Google Lens can help make your life easierby Lou Wang
-
entradas de blog
Ask a Techspert: What does AI do when it doesn’t know?by Iz Conroy
-
entradas de blog
Does Your Medical Image Classifier Know What It Doesn’t Know?by Abhijit Guha Roy & Jie Ren
-
entradas de blog
How DermAssist uses TensorFlow.js for on-device image quality checksby Miles Hutson & Aaron Loh
-
entradas de blog
Using AI to help find answers to common skin conditionsby Peggy Bui & Yuan Liu
-
entradas de blog
AI assists doctors in interpreting skin conditionsby Ayush Jain & Peggy Bui
-
entradas de blog
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Modelsby Timo Kohlberger & Yuan Liu
-
entradas de blog
Using Deep Learning to Inform Differential Diagnoses of Skin Diseasesby Yuan Liu & Peggy Bui
-
publicaciones
Health equity assessment of machine learning performance (HEAL): a framework and dermatology AI model case studySchaekermann, M., Spitz, T., Pyles, M., Cole-Lewis, H., Wulczyn, E., Pfohl, S. R., Martin, D., Jr, Jaroensri, R., Keeling, G., Liu, Y., Farquhar, S., Xue, Q., Lester, J., Hughes, C., Strachan, P., Tan, F., Bui, P., Mermel, C. H., Peng, L. H., Matias, Y., Corrado, G. S., Webster, D. R., Virmani, S., Semturs, C., Liu, Y., Horn, I. & Cameron Chen, P.-H.
-
entradas de blog
Differences Between Patient and Clinician-Taken Images: Implications for Virtual Care of Skin ConditionsRikhye, R. V., Hong, G. E., Singh, P., Smith, M. A., Loh, A., Muralidharan, V., Wong, D., Sayres, R., Phung, M., Betancourt, N., Fong, B., Sahasrabudhe, R., Nasim, K., Eschholz, A., Matias, Y., Corrado, G. S., Chou, K., Webster, D. R., Bui, P., Liu, Y., Liu, Y., Ko, J. & Lin, S.
-
publicaciones
A Reduction to Binary Approach for Debiasing Multiclass Datasets. Advances in Neural Information Processing SystemsAlabdulmohsin, I.M., Schrouff, J., Koyejo, S.
-
publicaciones
Federated Training of Dual Encoding Models on Small Non-IID Client DatasetsVemulapalli, R., Morningstar, W. R., Mansfield, P. A., Eichner, H., Singhal, K., Afkanpour, A. & Green, B.
-
publicaciones
Machine learning for clinical operations improvement via case triagingHuang, S. J., Liu, Y., Kanada, K., Corrado, G. S., Webster, D. R., Peng, L., Bui, P. & Liu, Y.
-
publicaciones
Does your dermatology classifier know what it doesn’t know? Detecting the long-tail of unseen conditionsGuha Roy, A., Ren, J., Azizi, S., Loh, A., Natarajan, V., Mustafa, B., Pawlowski, N., Freyberg, J., Liu, Y., Beaver, Z., Vo, N., Bui, P., Winter, S., MacWilliams, P., Corrado, G. S., Telang, U., Liu, Y., Cemgil, T., Karthikesalingam, A., Lakshminarayanan, B. & Winkens, J.
-
publicaciones
Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology PracticesWeng, W.-H., Deaton, J., Natarajan, V., Elsayed, G. F. & Liu, Y.
-
publicaciones
Addressing the Real-world Class Imbalance Problem in DermatologyWeng, W.-H., Deaton, J., Natarajan, V., Elsayed, G. F. & Liu, Y.
-
publicaciones
Agreement Between Saliency Maps and Human-Labeled Regions of Interest: Applications to Skin Disease ClassificationSingh, N., Lee, K., Coz, D., Angermueller, C., Huang, S., Loh, A. & Liu, Y.
-
publicaciones
A deep learning system for differential diagnosis of skin diseasesLiu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., Kanada, K., de Oliveira Marinho, G., Gallegos, J., Gabriele, S., Gupta, V., Singh, N., Natarajan, V., Hofmann-Wellenhof, R., Corrado, G. S., Peng, L. H., Webster, D. R., Ai, D., Huang, S., Liu, Y., Carter Dunn, R. & Coz, D.
-
publicaciones
DermGAN: Synthetic Generation of Clinical Skin Images with PathologyGhorbani, A., Natarajan, V., Coz, D. & Liu, Y.
-
publicaciones
Measuring clinician-machine agreement in differential diagnoses for dermatologyEng, C., Liu, Y. & Bhatnagar, R.
-
entradas de blog
Improved Detection of Elusive Polyps via Machine Learningby Yossi Matias & Ehud Rivlin
-
entradas de blog
Verily Opens New R&D Center in Israel Focused on the Application of AI in Healthcareby Robin Suchan
-
entradas de blog
Using Machine Learning to Detect Deficient Coverage in Colonoscopy Screeningsby Daniel Freedman & Ehud Rivlin
-
publicaciones
Artificial intelligence for phase recognition in complex laparoscopic cholecystectomyGolany, T., Aides, A., Freedman, D., Rabani, N., Liu, Y., Rivlin, E., Corrado, G. S., Matias, Y., Khoury, W., Kashtan, H. & Reissman, P.
-
publicaciones
Detection of elusive polyps via a large-scale artificial intelligence system (with videos)Livovsky, D. M., Veikherman, D., Golany, T., Aides, A., Dashinsky, V., Rabani, N., Ben Shimol, D., Blau, Y., Katzir, L., Shimshoni, I., Liu, Y., Segol, O., Goldin, E., Corrado, G., Lachter, J., Matias, Y., Rivlin, E. & Freedman, D.
-
publicaciones
Detecting Deficient Coverage in ColonoscopiesFreedman, D., Blau, Y., Katzir, L., Aides, A., Shimshoni, I., Veikherman, D., Golany, T., Gordon, A., Corrado, G., Matias, Y. & Rivlin, E.
-
entradas de blog
An ML-Based Framework for COVID-19 Epidemiologyby Joel Shor & Sercan Arik
-
entradas de blog
Google Cloud, Harvard Global Health Institute release improved COVID-19 Public Forecasts, share lessons learnedby Tomas Pfister
-
entradas de blog
Google Cloud AI and Harvard Global Health Institute Collaborate on new COVID-19 forecasting modelby Dario Sava
-
publicaciones
Algorithmic fairness in pandemic forecasting: lessons from COVID-19Tsai, T. C., Arik, S., Jacobson, B. H., Yoon, J., Yoder, N., Sava, D., Mitchell, M., Graham, G. & Pfister, T.
-
publicaciones
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United StatesCramer, E. Y., Ray, E. L., Lopez, V. K., Bracher, J., Brennen, A., Castro Rivadeneira, A. J., Gerding, A., Gneiting, T., House, K. H., Huang, Y., Jayawardena, D., Kanji, A. H., Khandelwal, A., Le, K., Mühlemann, A., Niemi, J., Shah, A., Stark, A., Wang, Y., Wattanachit, N., Zorn, M. W., Gu, Y., Jain, S., Bannur, N., Deva, A., Kulkarni, M., Merugu, S., Raval, A., Shingi, S., Tiwari, A., White, J., Abernethy, N. F., Woody, S., Dahan, M., Fox, S., Gaither, K., Lachmann, M., Meyers, L. A., Scott, J. G., Tec, M., Srivastava, A., George, G. E., Cegan, J. C., Dettwiller, I. D., England, W. P., Farthing, M. W., Hunter, R. H., Lafferty, B., Linkov, I., Mayo, M. L., Parno, M. D., Rowland, M. A., Trump, B. D., Zhang-James, Y., Chen, S., Faraone, S. V., Hess, J., Morley, C. P., Salekin, A., Wang, D., Corsetti, S. M., Baer, T. M., Eisenberg, M. C., Falb, K., Huang, Y., Martin, E. T., McCauley, E., Myers, R. L., Schwarz, T., Sheldon, D., Gibson, G. C., Yu, R., Gao, L., Ma, Y., Wu, D., Yan, X., Jin, X., Wang, Y.-X., Chen, Y., Guo, L., Zhao, Y., Gu, Q., Chen, J., Wang, L., Xu, P., Zhang, W., Zou, D., Biegel, H., Lega, J., McConnell, S., Nagraj, V. P., Guertin, S. L., Hulme-Lowe, C., Turner, S. D., Shi, Y., Ban, X., Walraven, R., Hong, Q.-J., Kong, S., van de Walle, A., Turtle, J. A., Ben-Nun, M., Riley, S., Riley, P., Koyluoglu, U., DesRoches, D., Forli, P., Hamory, B., Kyriakides, C., Leis, H., Milliken, J., Moloney, M., Morgan, J., Nirgudkar, N., Ozcan, G., Piwonka, N., Ravi, M., Schrader, C., Shakhnovich, E., Siegel, D., Spatz, R., Stiefeling, C., Wilkinson, B., Wong, A., Cavany, S., España, G., Moore, S., Oidtman, R., Perkins, A., Kraus, D., Kraus, A., Gao, Z., Bian, J., Cao, W., Lavista Ferres, J., Li, C., Liu, T.-Y., Xie, X., Zhang, S., Zheng, S., Vespignani, A., Chinazzi, M., Davis, J. T., Mu, K., Pastore Y Piontti, A., Xiong, X., Zheng, A., Baek, J., Farias, V., Georgescu, A., Levi, R., Sinha, D., Wilde, J., Perakis, G., Bennouna, M. A., Nze-Ndong, D., Singhvi, D., Spantidakis, I., Thayaparan, L., Tsiourvas, A., Sarker, A., Jadbabaie, A., Shah, D., Della Penna, N., Celi, L. A., Sundar, S., Wolfinger, R., Osthus, D., Castro, L., Fairchild, G., Michaud, I., Karlen, D., Kinsey, M., Mullany, L. C., Rainwater-Lovett, K., Shin, L., Tallaksen, K., Wilson, S., Lee, E. C., Dent, J., Grantz, K. H., Hill, A. L., Kaminsky, J., Kaminsky, K., Keegan, L. T., Lauer, S. A., Lemaitre, J. C., Lessler, J., Meredith, H. R., Perez-Saez, J., Shah, S., Smith, C. P., Truelove, S. A., Wills, J., Marshall, M., Gardner, L., Nixon, K., Burant, J. C., Wang, L., Gao, L., Gu, Z., Kim, M., Li, X., Wang, G., Wang, Y., Yu, S., Reiner, R. C., Barber, R., Gakidou, E., Hay, S. I., Lim, S., Murray, C., Pigott, D., Gurung, H. L., Baccam, P., Stage, S. A., Suchoski, B. T., Prakash, B. A., Adhikari, B., Cui, J., Rodríguez, A., Tabassum, A., Xie, J., Keskinocak, P., Asplund, J., Baxter, A., Oruc, B. E., Serban, N., Arik, S. O., Dusenberry, M., Epshteyn, A., Kanal, E., Le, L. T., Li, C.-L., Pfister, T., Sava, D., Sinha, R., Tsai, T., Yoder, N., Yoon, J., Zhang, L., Abbott, S., Bosse, N. I., Funk, S., Hellewell, J., Meakin, S. R., Sherratt, K., Zhou, M., Kalantari, R., Yamana, T. K., Pei, S., Shaman, J., Li, M. L., Bertsimas, D., Skali Lami, O., Soni, S., Tazi Bouardi, H., Ayer, T., Adee, M., Chhatwal, J., Dalgic, O. O., Ladd, M. A., Linas, B. P., Mueller, P., Xiao, J., Wang, Y., Wang, Q., Xie, S., Zeng, D., Green, A., Bien, J., Brooks, L., Hu, A. J., Jahja, M., McDonald, D., Narasimhan, B., Politsch, C., Rajanala, S., Rumack, A., Simon, N., Tibshirani, R. J., Tibshirani, R., Ventura, V., Wasserman, L., O’Dea, E. B., Drake, J. M., Pagano, R., Tran, Q. T., Ho, L. S. T., Huynh, H., Walker, J. W., Slayton, R. B., Johansson, M. A., Biggerstaff, M. & Reich, N. G.
-
publicaciones
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and JapanArık, S. Ö., Shor, J., Sinha, R., Yoon, J., Ledsam, J. R., Le, L. T., Dusenberry, M. W., Yoder, N. C., Popendorf, K., Epshteyn, A., Euphrosine, J., Kanal, E., Jones, I., Li, C.-L., Luan, B., Mckenna, J., Menon, V., Singh, S., Sun, M., Ravi, A. S., Zhang, L., Sava, D., Cunningham, K., Kayama, H., Tsai, T., Yoneoka, D., Nomura, S., Miyata, H. & Pfister, T.
-
publicaciones
Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural NetworksKapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M. & O’Banion, S.
-
publicaciones
Interpretable Sequence Learning for Covid-19 ForecastingArik, Li, Yoon, Sinha, Epshteyn, Le, Menon, Singh, Zhang, Nikoltchev, Sonthalia, Nakhost, Kanal & Pfister.
-
entradas de blog
Google at 25: By the numbersby Michelle Budzyna & Molly McHugh-Johnson
-
entradas de blog
7 ways Google Health is improving outcomes in Asia Pacificby Karen DeSalvo
-
entradas de blog
5 myths about medical AI, debunkedby Kasumi Widner
-
entradas de blog
An eye to the future: How AI could help to improve detection of eye disease in Australian communitiesby Angus Turner
-
entradas de blog
Healthcare AI systems that put people at the centerby Emma Beede
-
entradas de blog
The Check Up: our latest health AI developmentsby Greg Corrado
-
entradas de blog
New milestones in helping prevent eye disease with Verilyby Kasumi Widner & Sunny Virmani
-
entradas de blog
Launching a powerful new screening tool for diabetic eye disease in India -
entradas de blog
AI for Social Good in Asia Pacificby Kent Walter
-
entradas de blog
Improving the Effectiveness of Diabetic Retinopathy Modelsby Rory Sayres & Jonathan Krause
-
entradas de blog
A major milestone for the treatment of eye diseaseby Mustafa Suleyman
-
entradas de blog
Detecting diabetic eye disease with machine learningby Lily Peng
-
entradas de blog
Deep learning for Detection of Diabetic Eye Diseaseby Lily Peng & Varun Gulshan
-
publicaciones
Risk Stratification for Diabetic Retinopathy Screening Order Using Deep Learning: A Multicenter Prospective StudyBora, A., Tiwari, R., Bavishi, P., Virmani, S., Huang, R., Traynis, I., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Pattanapongpaiboon, W., Chopra, R. & Ruamviboonsuk, P.
-
publicaciones
Lessons learned from translating AI from development to deployment in healthcareWidner, K., Virmani, S., Krause, J., Nayar, J., Tiwari, R., Pedersen, E. R., Jeji, D., Hammel, N., Matias, Y., Corrado, G. S., Liu, Y., Peng, L. & Webster, D. R.
-
publicaciones
Cost-Utility Analysis of Deep Learning and Trained Human Graders for Diabetic Retinopathy Screening in a Nationwide ProgramSrisubat, A., Kittrongsiri, K., Sangroongruangsri, S., Khemvaranan, C., Shreibati, J. B., Ching, J., Hernandez, J., Tiwari, R., Hersch, F., Liu, Y., Hanutsaha, P., Ruamviboonsuk, V., Turongkaravee, S., Raman, R. & Ruamviboonsuk, P.
-
publicaciones
Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous AustraliansChia, M. A., Hersch, F., Sayres, R., Bavishi, P., Tiwari, R., Keane, P. A. & Turner, A. W.
-
publicaciones
Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort studyRuamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., Raman, R., Levinstein, B., Liu, Y., Schaekermann, M., Lee, R., Virmani, S., Widner, K., Chambers, J., Hersch, F., Peng, L. & Webster, D. R.
-
publicaciones
Redesigning Clinical Pathways for Immediate Diabetic Retinopathy Screening ResultsPedersen Elin Rønby, Cuadros Jorge, Khan Mahbuba, Fleischmann Sybille, Wolff Gregory, Hammel Naama, Liu Yun & Leung Geoffrey.
-
publicaciones
Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep LearningWilson, M., Chopra, R., Wilson, M. Z., Cooper, C., MacWilliams, P., Liu, Y., Wulczyn, E., Florea, D., Hughes, C. O., Karthikesalingam, A., Khalid, H., Vermeirsch, S., Nicholson, L., Keane, P. A., Balaskas, K. & Kelly, C. J.
-
publicaciones
Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human GradersLimwattanayingyong, J., Nganthavee, V., Seresirikachorn, K., Singalavanija, T., Soonthornworasiri, N., Ruamviboonsuk, V., Rao, C., Raman, R., Grzybowski, A., Schaekermann, M., Peng, L. H., Webster, D. R., Semturs, C., Krause, J., Sayres, R., Hersch, F., Tiwari, R., Liu, Y. & Ruamviboonsuk, P.
-
publicaciones
Improving medical annotation quality to decrease labeling burden using stratified noisy cross-validationHsu J, Phene S, Mitani A, Luo J, Hammel N, Krause J, Sayres R.
-
publicaciones
Adherence to ophthalmology referral, treatment and follow-up after diabetic retinopathy screening in the primary care settingBresnick, G., Cuadros, J. A., Khan, M., Fleischmann, S., Wolff, G., Limon, A., Chang, J., Jiang, L., Cuadros, P. & Pedersen, E. R.
-
publicaciones
A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic RetinopathyBeede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P. & Vardoulakis, L. M.
-
publicaciones
Expert Discussions Improve Comprehension of Difficult Cases in Medical Image AssessmentSchaekermann, M., Cai, C. J., Huang, A. E. & Sayres, R.
-
publicaciones
Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus PhotographsPhene, S., Dunn, R. C., Hammel, N., Liu, Y., Krause, J., Kitade, N., Schaekermann, M., Sayres, R., Wu, D. J., Bora, A., Semturs, C., Misra, A., Huang, A. E., Spitze, A., Medeiros, F. A., Maa, A. Y., Gandhi, M., Corrado, G. S., Peng, L. & Webster, D. R.
-
publicaciones
Remote Tool-Based Adjudication for Grading Diabetic RetinopathySchaekermann, M., Hammel, N., Terry, M., Ali, T. K., Liu, Y., Basham, B., Campana, B., Chen, W., Ji, X., Krause, J., Corrado, G. S., Peng, L., Webster, D. R., Law, E. & Sayres, R.
-
publicaciones
Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in IndiaGulshan, V., Rajan, R. P., Widner, K., Wu, D., Wubbels, P., Rhodes, T., Whitehouse, K., Coram, M., Corrado, G., Ramasamy, K., Raman, R., Peng, L. & Webster, D. R.
-
publicaciones
Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening programRuamviboonsuk, P., Krause, J., Chotcomwongse, P., Sayres, R., Raman, R., Widner, K., Campana, B. J. L., Phene, S., Hemarat, K., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Rao, C., Kuruvilla, O., Jung, J., Tan, J., Orprayoon, S., Kangwanwongpaisan, C., Sukumalpaiboon, R., Luengchaichawang, C., Fuangkaew, J., Kongsap, P., Chualinpha, L., Saree, S., Kawinpanitan, S., Mitvongsa, K., Lawanasakol, S., Thepchatri, C., Wongpichedchai, L., Corrado, G. S., Peng, L. & Webster, D. R.
-
publicaciones
Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic RetinopathySayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., Krause, J., Narayanaswamy, A., Rastegar, Z., Wu, D., Xu, S., Barb, S., Joseph, A., Shumski, M., Smith, J., Sood, A. B., Corrado, G. S., Peng, L. & Webster, D. R.
-
publicaciones
Clinically applicable deep learning for diagnosis and referral in retinal diseaseFauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., Hughes, C.O., Raine, R., Hughes, J., Sim, D. A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back, T., Khaw, P.T., Suleyman, M., Cornebise, J., Keane, P.A., & Ronneberger, O.
-
publicaciones
Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic RetinopathyKrause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G. S., Peng, L., & Webster, D.R.
-
publicaciones
Blind spots in telemedicine: a qualitative study of staff workarounds to resolve gaps in diabetes managementBouskill, K., Smith-Morris, C., Bresnick, G., Cuadros, J. & Pedersen, E. R.
-
publicaciones
Diabetic Retinopathy and the Cascade into Vision LossSmith-Morris, C., Bresnick, G. H., Cuadros, J., Bouskill, K. E. & Pedersen, E. R.
-
publicaciones
Who Said What: Modeling Individual Labelers Improves ClassificationGuan, M., Gulshan, V., Dai, A, Hinton, G.
-
publicaciones
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsGulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Ramasamy, K., Nelson, P., Mega, J., & Webster, D.
-
entradas de blog [más en Blog de Fitbit]
How we’re using AI to connect people to health information -
entradas de blog
3 heart-health tips from Fitbit’s lead cardiologistby Molly McHugh-Johnson
-
entradas de blog
6 things I learned after using the Fitbit Charge 6 for a weekby Mike Darling
-
entradas de blog
New Fitbit study explores metabolic healthby Javier L. Prieto
-
entradas de blog [más en Blog de Fitbit]
3 ways Fitbit can improve your health — backed by researchby Amy McDonough
-
entradas de blog
How Google Pixel Watch 2 and Fitbit Charge 6 improved heart rate trackingby Molly McHugh-Johnson
-
entradas de blog
Google Pixel Watch 2: New ways to stay healthy, connected and safeby Sandeep Waraich
-
entradas de blog
Introducing Fitbit Charge 6: Our most advanced tracker yetby TJ Varghese
-
entradas de blog
Meet the new Fitbit app that’s redesigned with you in mindby Maggie Stanphill & Bhanu Narasimhan
-
entradas de blog
How we trained Fitbit’s Body Response feature to detect stressby Elena Perez & Samy Abdel-Ghaffer
-
entradas de blog
7 ways to stress less with Fitbitby Elena Perez
-
entradas de blog
3 ways Google products can help you feel less stressedby Megan Jones Bell
-
entradas de blog
6 ways Google AI is helping you sleep betterby Molly McHugh-Johnson
-
entradas de blog
3 ways to take better care of your mind and body in 2023by Megan Jones Bell
-
entradas de blog
8 things we launched in 2022 to support your healthby Iz Conroy
-
entradas de blog
I tried Fitbit’s new sleep features for two monthsby Zahra Barnes
-
entradas de blog
Google Pixel Watch: Help by Google, health by Fitbitby Sandeep Waraich
-
entradas de blog
8 things to try now on Fitbit Sense 2 and Versa 4by TJ Varghese
-
entradas de blog
Our work toward health equityby Ivor Horn
-
entradas de blog
Fitbit’s fall lineup: helping you live your healthiest lifeby TJ Varghese
-
entradas de blog
Kick-start your fitness routine with Fitbit Inspire 3by The Fitbit Team
-
entradas de blog
Manage your health and fitness with Fitbit Versa 4 and Sense 2by The Fitbit Team
-
entradas de blog
Improve your ZZZs with Fitbit Premium Sleep Profileby The Fitbit Team
-
entradas de blog
Mental health resources you can count onby Megan Jones Bell
-
entradas de blog
New Fitbit feature makes AFib detection more accessibleby The Fitbit Team
-
entradas de blog
The Check Up: helping people live healthier livesby Karen DeSalvo
-
publicaciones
Measure by measure: Resting heart rate across the 24-hour cycleSpeed, C., Arneil, T., Harle, R., Wilson, A., Karthikesalingam, A., McConnell, M. & Phillips, J.
-
publicaciones
Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart StudyLubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S. J., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos, A. & Foulkes, A. S.
-
publicaciones
Occurrence of Relative Bradycardia and Relative Tachycardia in Individuals Diagnosed With COVID-19Natarajan, A., Su, H.-W. & Heneghan, C.
-
publicaciones
Measurement of respiratory rate using wearable devices and applications to COVID-19 detectionNatarajan, A., Su, H.-W., Heneghan, C., Blunt, L., O’Connor, C. & Niehaus, L.
-
entradas de blog [más en Blog de DeepVariant]
A breakthrough to better represent human genetic diversityby Andrew Carroll
-
entradas de blog
Building better pangenomes to improve the equity of genomicsby Andrew Carroll & Kishwar Shafin
-
entradas de blog
An ML-based approach to better characterize lung diseasesBabak Behsaz & Andrew Carroll
-
entradas de blog
Developing an aging clock using deep learning on retinal imagesby Sara Ahadi & Andrew Carroll
-
entradas de blog
7 ways Google is using AI to help solve society's challengesby Katie Malczyk
-
entradas de blog
A new genome sequencing tool powered with our technologyby Andrew Carroll
-
entradas de blog
Advancing genomics to better understand and treat diseaseby Andrew Carroll & Pi-Chuan Chang
-
entradas de blog
DeepNull: an open-source method to improve the discovery power of genetic association studiesby Farhad Hormozdiari & Andrew Carroll
-
entradas de blog
Improving Genomic Discovery with Machine Learningby Andrew Carroll & Cory McLean
-
entradas de blog
Improving the Accuracy of Genomic Analysis with DeepVariant 1.0by Andrew Carroll & Pi-Chuan Chang
-
entradas de blog
DeepVariant Accuracy Improvements for Genetic Datatypesby Pi-Chuan Chang & Lizzie Dorfman
-
entradas de blog
DeepVariant: Highly Accurate Genomes With Deep Neural Networksby Mark DePristo & Ryan Poplin
-
entradas de blog
An AI Resident at work: Suhani Vora and her work on genomicsby Phing Lee
-
publicaciones
Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylationKolmogorov, M., Billingsley, K. J., Mastoras, M., Meredith, M., Monlong, J., Lorig-Roach, R., Asri, M., Alvarez Jerez, P., Malik, L., Dewan, R., Reed, X., Genner, R. M., Daida, K., Behera, S., Shafin, K., Pesout, T., Prabakaran, J., Carnevali, P., Yang, J., Rhie, A., Scholz, S. W., Traynor, B. J., Miga, K. H., Jain, M., Timp, W., Phillippy, A. M., Chaisson, M., Sedlazeck, F. J., Blauwendraat, C. & Paten, B.
-
publicaciones
The complete sequence of a human Y chromosomeRhie, A., Nurk, S., Cechova, M., Hoyt, S. J., Taylor, D. J., Altemose, N., Hook, P. W., Koren, S., Rautiainen, M., Alexandrov, I. A., Allen, J., Asri, M., Bzikadze, A. V., Chen, N.-C., Chin, C.-S., Diekhans, M., Flicek, P., Formenti, G., Fungtammasan, A., Garcia Giron, C., Garrison, E., Gershman, A., Gerton, J. L., Grady, P. G. S., Guarracino, A., Haggerty, L., Halabian, R., Hansen, N. F., Harris, R., Hartley, G. A., Harvey, W. T., Haukness, M., Heinz, J., Hourlier, T., Hubley, R. M., Hunt, S. E., Hwang, S., Jain, M., Kesharwani, R. K., Lewis, A. P., Li, H., Logsdon, G. A., Lucas, J. K., Makalowski, W., Markovic, C., Martin, F. J., Mc Cartney, A. M., McCoy, R. C., McDaniel, J., McNulty, B. M., Medvedev, P., Mikheenko, A., Munson, K. M., Murphy, T. D., Olsen, H. E., Olson, N. D., Paulin, L. F., Porubsky, D., Potapova, T., Ryabov, F., Salzberg, S. L., Sauria, M. E. G., Sedlazeck, F. J., Shafin, K., Shepelev, V. A., Shumate, A., Storer, J. M., Surapaneni, L., Taravella Oill, A. M., Thibaud-Nissen, F., Timp, W., Tomaszkiewicz, M., Vollger, M. R., Walenz, B. P., Watwood, A. C., Weissensteiner, M. H., Wenger, A. M., Wilson, M. A., Zarate, S., Zhu, Y., Zook, J. M., Eichler, E. E., O’Neill, R. J., Schatz, M. C., Miga, K. H., Makova, K. D. & Phillippy, A. M.
-
publicaciones
A draft human pangenome referenceLiao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J. K., Monlong, J., Abel, H. J., Buonaiuto, S., Chang, X. H., Cheng, H., Chu, J., Colonna, V., Eizenga, J. M., Feng, X., Fischer, C., Fulton, R. S., Garg, S., Groza, C., Guarracino, A., Harvey, W. T., Heumos, S., Howe, K., Jain, M., Lu, T.-Y., Markello, C., Martin, F. J., Mitchell, M. W., Munson, K. M., Mwaniki, M. N., Novak, A. M., Olsen, H. E., Pesout, T., Porubsky, D., Prins, P., Sibbesen, J. A., Sirén, J., Tomlinson, C., Villani, F., Vollger, M. R., Antonacci-Fulton, L. L., Baid, G., Baker, C. A., Belyaeva, A., Billis, K., Carroll, A., Chang, P.-C., Cody, S., Cook, D. E., Cook-Deegan, R. M., Cornejo, O. E., Diekhans, M., Ebert, P., Fairley, S., Fedrigo, O., Felsenfeld, A. L., Formenti, G., Frankish, A., Gao, Y., Garrison, N. A., Giron, C. G., Green, R. E., Haggerty, L., Hoekzema, K., Hourlier, T., Ji, H. P., Kenny, E. E., Koenig, B. A., Kolesnikov, A., Korbel, J. O., Kordosky, J., Koren, S., Lee, H., Lewis, A. P., Magalhães, H., Marco-Sola, S., Marijon, P., McCartney, A., McDaniel, J., Mountcastle, J., Nattestad, M., Nurk, S., Olson, N. D., Popejoy, A. B., Puiu, D., Rautiainen, M., Regier, A. A., Rhie, A., Sacco, S., Sanders, A. D., Schneider, V. A., Schultz, B. I., Shafin, K., Smith, M. W., Sofia, H. J., Abou Tayoun, A. N., Thibaud-Nissen, F., Tricomi, F. F., Wagner, J., Walenz, B., Wood, J. M. D., Zimin, A. V., Bourque, G., Chaisson, M. J. P., Flicek, P., Phillippy, A. M., Zook, J. M., Eichler, E. E., Haussler, D., Wang, T., Jarvis, E. D., Miga, K. H., Garrison, E., Marschall, T., Hall, I. M., Li, H. & Paten, B.
-
publicaciones
Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk modelsCosentino, J., Behsaz, B., Alipanahi, B., McCaw, Z. R., Hill, D., Schwantes-An, T.-H., Lai, D., Carroll, A., Hobbs, B. D., Cho, M. H., McLean, C. Y. & Hormozdiari, F.
-
publicaciones
Best: A Tool for Characterizing Sequencing ErrorsLiu, D., Belyaeva, A., Shafin, K., Chang, P.-C., Carroll, A. & Cook, D. E.
-
publicaciones
Knowledge distillation for fast and accurate DNA sequence correction.Belyaeva, A., Shor, J., Cook, D. E., Shafin, K., Liu, D., Töpfer, A., Wenger, A. M., Rowell, W. J., Yang, H., Kolesnikov, A., McLean, C. Y., Nattestad, M., Carroll, A. & Chang, P.-C.
-
publicaciones
An Empirical Study of ML-based Phenotyping and Denoising for Improved Genomic DiscoveryYuan, B., McLean, C. Y., Hormozdiari, F. I. & Cosentino, J.
-
publicaciones
DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformerBaid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Belyaeva, A., Töpfer, A., Wenger, A. M., Rowell, W. J., Yang, H., Kolesnikov, A., Ammar, W., Vert, J.-P., Vaswani, A., McLean, C. Y., Nattestad, M., Chang, P.-C. & Carroll, A.
-
publicaciones
Benchmarking challenging small variants with linked and long readsWagner, J., Olson, N. D., Harris, L., Khan, Z., Farek, J., Mahmoud, M., Stankovic, A., Kovacevic, V., Yoo, B., Miller, N., Rosenfeld, J. A., Ni, B., Zarate, S., Kirsche, M., Aganezov, S., Schatz, M. C., Narzisi, G., Byrska-Bishop, M., Clarke, W., Evani, U. S., Markello, C., Shafin, K., Zhou, X., Sidow, A., Bansal, V., Ebert, P., Marschall, T., Lansdorp, P., Hanlon, V., Mattsson, C.-A., Barrio, A. M., Fiddes, I. T., Xiao, C., Fungtammasan, A., Chin, C.-S., Wenger, A. M., Rowell, W. J., Sedlazeck, F. J., Carroll, A., Salit, M. & Zook, J. M.
-
publicaciones
A complete pedigree-based graph workflow for rare candidate variant analysisMarkello, C., Huang, C., Rodriguez, A., Carroll, A., Chang, P.-C., Eizenga, J., Markello, T., Haussler, D. & Paten, B.
-
publicaciones
Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencingGoenka, S. D., Gorzynski, J. E., Shafin, K., Fisk, D. G., Pesout, T., Jensen, T. D., Monlong, J., Chang, P.-C., Baid, G., Bernstein, J. A., Christle, J. W., Dalton, K. P., Garalde, D. R., Grove, M. E., Guillory, J., Kolesnikov, A., Nattestad, M., Ruzhnikov, M. R. Z., Samadi, M., Sethia, A., Spiteri, E., Wright, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
-
publicaciones
Ultrarapid Nanopore Genome Sequencing in a Critical Care SettingGorzynski, J. E., Goenka, S. D., Shafin, K., Jensen, T. D., Fisk, D. G., Grove, M. E., Spiteri, E., Pesout, T., Monlong, J., Baid, G., Bernstein, J. A., Ceresnak, S., Chang, P.-C., Christle, J. W., Chubb, H., Dalton, K. P., Dunn, K., Garalde, D. R., Guillory, J., Knowles, J. W., Kolesnikov, A., Ma, M., Moscarello, T., Nattestad, M., Perez, M., Ruzhnikov, M. R. Z., Samadi, M., Setia, A., Wright, C., Wusthoff, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
-
publicaciones
Ultra-Rapid Nanopore Whole Genome Genetic Diagnosis of Dilated Cardiomyopathy in an Adolescent With Cardiogenic ShockGorzynski, J. E., Goenka, S. D., Shafin, K., Jensen, T. D., Fisk, D. G., Grove, M. E., Spiteri, E., Pesout, T., Monlong, J., Bernstein, J. A., Ceresnak, S., Chang, P.-C., Christle, J. W., Chubb, H., Dunn, K., Garalde, D. R., Guillory, J., Ruzhnikov, M. R. Z., Wright, C., Wusthoff, C. J., Xiong, K., Hollander, S. A., Berry, G. J., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
-
publicaciones
Pangenomics enables genotyping of known structural variants in 5202 diverse genomesSirén, J., Monlong, J., Chang, X., Novak, A. M., Eizenga, J. M., Markello, C., Sibbesen, J. A., Hickey, G., Chang, P.-C., Carroll, A., Gupta, N., Gabriel, S., Blackwell, T. W., Ratan, A., Taylor, K. D., Rich, S. S., Rotter, J. I., Haussler, D., Garrison, E. & Paten, B.
-
publicaciones
DeepNull models non-linear covariate effects to improve phenotypic prediction and association powerMcCaw, Z. R., Colthurst, T., Yun, T., Furlotte, N. A., Carroll, A., Alipanahi, B., McLean, C. Y. & Hormozdiari, F.
-
publicaciones
A population-specific reference panel for improved genotype imputation in African AmericansO’Connell, J., Yun, T., Moreno, M., Li, H., Litterman, N., Kolesnikov, A., Noblin, E., Chang, P.-C.,Shastri, A., Dorfman, E. H., Shringarpure, S., Auton, A., Carroll, A. & McLean, C. Y.
-
publicaciones
Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-readsShafin, K., Pesout, T., Chang, P.-C., Nattestad, M., Kolesnikov, A., Goel, S., Baid, G., Kolmogorov, M., Eizenga, J. M., Miga, K. H., Carnevali, P., Jain, M., Carroll, A. & Paten, B.
-
publicaciones
DeepConsensus: Gap-Aware Sequence Transformers for Sequence CorrectionBaid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Wenger, A. M., Rowell, W. J., Nattestad, M., Yang, H., Kolesnikov, A., Töpfer, A., Ammar, W., Vert, J.-P., Vaswani, A., McLean, C. Y., Chang, P.-C. & Carroll, A.
-
publicaciones
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphologyAlipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Foster, P. J., Peng, L. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
-
publicaciones
Accurate, scalable cohort variant calls using DeepVariant and GLnexusYun, T., Li, H., Chang, P-C., Lin, M., Carroll, A., & McLean, C. Y.
-
publicaciones
SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic RegressionYadlowsky, S., Yun, T., McLean, C. & D’Amour, A.
-
publicaciones
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphologyAlipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
-
publicaciones
GenomeWarp: an alignment-based variant coordinate transformationMcLean, C. Y., Hwang, Y., Poplin, R. & DePristo, M. A.
-
publicaciones
Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeWenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, M., Mahmoud, M., Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C., Myers, G., DePristo, M. A., Ruan, J., Marschall, T., Sedlazeck, F. J., Zook, J. M., Li, H., Koren, S., Carroll, A., Rank, D. R. & Hunkapiller, M. W.
-
publicaciones
A universal SNP and small-indel variant caller using deep neural networksPoplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y. & DePristo, M. A.
-
publicaciones
Deep learning of genomic variation and regulatory network dataTelenti, A., Lippert, C., Chang, P.-C. & DePristo, M.
-
publicaciones
Sequential regulatory activity prediction across chromosomes with convolutional neural networksKelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., McLean, C. Y. & Snoek, J.
-
entradas de blog
Expanding research on digital wellbeingby Nicholas Allen
-
entradas de blog
Advancing health research with Google Health Studiesby Jon Morgan & Paul Eastham
-
entradas de blog
How we built and tested body temperature on Pixel 8 Proby Molly McHugh-Johnson
-
entradas de blog
New Pixel features for a minty fresh start to the yearby Stephanie Scott
-
entradas de blog
Audioplethysmography for cardiac monitoring with hearable devicesby Xiaoran "Van" Fan & Trausti Thormundsson
-
entradas de blog
The Check Up: our latest health AI developmentsby Greg Corrado
-
entradas de blog
Enhanced Sleep Sensing in Nest Hubby Michael Dixon & Reena Singhal Lee
-
entradas de blog
Need a better night’s sleep? Meet the new Nest Hubby Ashton Udall
-
entradas de blog
Contactless Sleep Sensing in Nest Hubby Michael Dixon & Reena Singhal Lee
-
entradas de blog
Take a pulse on health and wellness with your phoneby Shwetak Patel
-
publicaciones
Audioplethysmography for Cardiac Monitoring in HearablesFan, X., Pearl, D., Howard, R., Shangguan, L. & Thormundsson, T. APG.
-
publicaciones
SimPer: Simple Self-Supervised Learning of Periodic TargetsYang, Y., Liu, X., Wu, J., Borac, S., Katabi, D., Poh, M.-Z. & McDuff, D.
-
publicaciones
Prospective validation of smartphone-based heart rate and respiratory rate measurement algorithmsBae, S., Borac, S., Emre, Y., Wang, J., Wu, J., Kashyap, M., Kang, S.-H., Chen, L., Moran, M., Cannon, J., Teasley, E. S., Chai, A., Liu, Y., Wadhwa, N., Krainin, M., Rubinstein, M., Maciel, A., McConnell, M. V., Patel, S., Corrado, G. S., Taylor, J. A., Zhan, J. & Po, M. J.
-
publicaciones
Sleep-wake Detection With a Contactless, Bedside Radar Sleep Sensing SystemDixon, M., Schneider, L. D., Yu, J., Hsu, J., Pathak, A., Shin, D., Lee, R. S., Malhotra, M., Mixter, K., McConnell, M. V., Taylor, J. A., Patel, S. N.,
-
entradas de blog [more at Med-PaLM site]
Our progress on generative AI in healthby Yossi Matias
-
entradas de blog
3 ways we are building equity into our health workby Dr. Ivor Horn
-
entradas de blog
AMIE: A research AI system for diagnostic medical reasoning and conversationsby Alan Karthikesalingam & Vivek Natarajan
-
entradas de blog
3 predictions for AI in healthcare in 2024by Aashima Gupta
-
entradas de blog
MedLM: generative AI fine-tuned for the healthcare industryby Yossi Matias & Aashima Gupta
-
entradas de blog [más en el sitio Med-PaLM]
HLTH 2023: Bringing AI to health responsiblyby Michael Howell
-
entradas de blog
How AI can improve health for everyone, everywhereby Karen DeSalvo
-
entradas de blog
How 3 healthcare organizations are using generative AIby Aashima Gupta & Greg Corrado
-
entradas de blog
Multimodal medical AIby Greg Corrado and Yossi Matias
-
entradas de blog
Google Research at I/O 2023by James Manyika & Jeff Dean
-
entradas de blog
A responsible path to generative AI in healthcareby Aashima Gupta & Amy Waldron
-
entradas de blog
Our latest health AI research updatesby Greg Corrado & Yossi Matias
-
entradas de blog
Google Research, 2022 & beyond: Healthby Greg Corrado & Yossi Matias
-
publicaciones
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language ModelsPfohl, S. R., Cole-Lewis, H., Sayres, R., Neal, D., Asiedu, M., Dieng, A., Tomasev, N., Rashid, Q. M., Azizi, S., Rostamzadeh, N., McCoy, L. G., Celi, L. A., Liu, Y., Schaekermann, M., Walton, A., Parrish, A., Nagpal, C., Singh, P., Dewitt, A., Mansfield, P., Prakash, S., Heller, K., Karthikesalingam, A., Semturs, C., Barral, J., Corrado, G., Matias, Y., Smith-Loud, J., Horn, I. & Singhal, K.
-
publicaciones
Towards Generalist Biomedical AI.Tu, T., Azizi, S., Driess, D., Schaekermann, M., Amin, M., Chang, P.-C., Carroll, A., Lau, C., Tanno, R., Ktena, I., Mustafa, B., Chowdhery, A., Liu, Y., Kornblith, S., Fleet, D., Mansfield, P., Prakash, S., Wong, R., Virmani, S., Semturs, C., Sara Mahdavi, S., Green, B., Dominowska, E., Aguera y Arcas, B., Barral, J., Webster, D., Corrado, G. S., Matias, Y., Singhal, K., Florence, P., Karthikesalingam, A. & Natarajan, V.
-
publicaciones
Towards Conversational Diagnostic AITu, T., Palepu, A., Schaekermann, M., Saab, K., Freyberg, J., Tanno, R., Wang, A., Li, B., Amin, M., Tomasev, N., Azizi, S., Singhal, K., Cheng, Y., Hou, L., Webson, A., Kulkarni, K., Sara Mahdavi, S., Semturs, C., Gottweis, J., Barral, J., Chou, K., Corrado, G. S., Matias, Y., Karthikesalingam, A. & Natarajan, V.
-
publicaciones
LLMs Accelerate Annotation for Medical Information Extraction.Goel, A., Gueta, A., Gilon, O., Liu, C., Erell, S., Nguyen, L. H., Hao, X., Jaber, B., Reddy, S., Kartha, R., Steiner, J., Laish, I. & Feder, A.
-
publicaciones
Towards Accurate Differential Diagnosis with Large Language Models.McDuff, D., Schaekermann, M., Tu, T., Palepu, A., Wang, A., Garrison, J., Singhal, K., Sharma, Y., Azizi, S., Kulkarni, K., Hou, L., Cheng, Y., Liu, Y., Sara Mahdavi, S., Prakash, S., Pathak, A., Semturs, C., Patel, S., Webster, D. R., Dominowska, E., Gottweis, J., Barral, J., Chou, K., Corrado, G. S., Matias, Y., Sunshine, J., Karthikesalingam, A. & Natarajan, V.
-
publicaciones
Consensus, dissensus and synergy between clinicians and specialist foundation models in radiology report generationTanno, R., Barrett, D. G. T., Sellergren, A., Ghaisas, S., Dathathri, S., See, A., Welbl, J., Singhal, K., Azizi, S., Tu, T., Schaekermann, M., May, R., Lee, R., Man, S., Ahmed, Z., Mahdavi, S., Belgrave, D., Natarajan, V., Shetty, S., Kohli, P., Huang, P.-S., Karthikesalingam, A. & Ktena, I.
-
publicaciones
The Capability of Large Language Models to Measure Psychiatric FunctioningGalatzer-Levy, I. R., McDuff, D., Natarajan, V., Karthikesalingam, A. & Malgaroli, M.
-
publicaciones
ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encodersXu, S., Yang, L., Kelly, C., Sieniek, M., Kohlberger, T., Ma, M., Weng, W.-H., Kiraly, A., Kazemzadeh, S., Melamed, Z., Park, J., Strachan, P., Liu, Y., Lau, C., Singh, P., Chen, C., Etemadi, M., Kalidindi, S. R., Matias, Y., Chou, K., Corrado, G. S., Shetty, S., Tse, D., Prabhakara, S., Golden, D., Pilgrim, R., Eswaran, K. & Sellergren, A.
-
publicaciones
Multimodal LLMs for health grounded in individual-specific dataBelyaeva, A., Cosentino, J., Hormozdiari, F., Eswaran, K., Shetty, S., Corrado, G., Carroll, A., McLean, C. Y. & Furlotte, N. A.
-
publicaciones
Large Language Models are Few-Shot Health LearnersLiu, X., McDuff, D., Kovacs, G., Galatzer-Levy, I., Sunshine, J., Zhan, J., Poh, M.-Z., Liao, S., Di Achille, P. & Patel, S.
-
publicaciones
Towards Expert-Level Medical Question Answering with Large Language ModelsSinghal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., Clark, K., Pfohl, S., Cole-Lewis, H., Neal, D., Schaekermann, M., Wang, A., Amin, M., Lachgar, S., Mansfield, P., Prakash, S., Green, B., Dominowska, E., Aguera y Arcas, B., Tomasev, N., Liu, Y., Wong, R., Semturs, C., Sara Mahdavi, S., Barral, J., Webster, D., Corrado, G. S., Matias, Y., Azizi, S., Karthikesalingam, A. & Natarajan, V.
-
publicaciones
Large Language Models Encode Clinical KnowledgeSinghal, K., Azizi, S., Tu, T., Sara Mahdavi, S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Scharli, N., Chowdhery, A., Mansfield, P., Aguera y Arcas, B., Webster, D., Corrado, G. S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N., Liu, Y., Rajkomar, A., Barral, J., Semturs, C., Karthikesalingam, A. & Natarajan, V.
-
entradas de blog
Joint Speech Recognition and Speaker Diarization via Sequence Transductionby Laurent El Shafey and Izhak Shafran
-
entradas de blog
How AI can improve products for people with impaired speechby Julie Cattiau
-
entradas de blog
Understanding Medical Conversationsby Katherine Chou and Chung-Cheng Chiu
-
publicaciones
Optimizing Audio Augmentations for Contrastive Learning of Health-Related Acoustic SignalsBlankemeier, L., Baur, S., Weng, W.-H., Garrison, J., Matias, Y., Prabhakara, S., Ardila, D. & Nabulsi, Z.
-
publicaciones
Medical Scribe: Corpus Development and Model Performance AnalysesShafran, I., Du, N., Tran, L., Perry, A., Keyes, L., Knichel, M., Domin, A., Huang, L., Chen, Y., Li, G., Wang, M., El Shafey, L., Soltau, H. & Paul, J. S.
-
publicaciones
Extracting Symptoms and their Status from Clinical ConversationsDu, N., Chen, K., Kannan, A., Tran, L., Chen, Y. & Shafran, I.
-
publicaciones
Automatically Charting Symptoms From Patient-Physician Conversations Using Machine LearningRajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., & Dean, J.
-
publicaciones
Joint Speech Recognition and Speaker Diarization via Sequence TransductionEl Shafey, L., Soltau, H. & Shafran, I.
-
publicaciones
Learning to Infer Entities, Properties and their Relations from Clinical ConversationsDu, N., Wang, M., Tran, L., Li, G. & Shafran, I.
-
publicaciones
Speech recognition for medical conversationsChiu, C.-C., Tripathi, A., Chou, K., Co, C., Jaitly, N., Jaunzeikare, D., Kannan, A., Nguyen, P., Sak, H., Sankar, A., Tansuwan, J., Wan, N., Wu, Y., & Zhang X.
-
entradas de blog
Deciphering clinical abbreviations with privacy protecting MLby Alvin Rajkoma and Eric Loreaux
-
entradas de blog
EHR-Safe: Generating High-Fidelity and Privacy-Preserving Synthetic Electronic Health Recordsby Jinsung Yoon and Sercan O. Arik
-
entradas de blog
Multi-task Prediction of Organ Dysfunction in ICUsby Subhrajit Roy & Diana Mincu
-
entradas de blog
A Step Towards Protecting Patients from Medication Errorsby Kathryn Rough & Alvin Rajkomar
-
entradas de blog
Expanding the Application of Deep Learning to Electronic Health Recordsby Alvin Rajkomar & Eyal Oren
-
entradas de blog
Scaling Streams with Googleby Demis Hassabis & Mustafa Suleyman & Dominic King
-
entradas de blog
Deep Learning for Electronic Health Recordsby Alvin Rajkomar & Eyal Oren
-
entradas de blog
Making Healthcare Data Work Better with Machine Learningby Patrik Sundberg & Eyal Oren
-
publicaciones
User-centred design for machine learning in health care: a case study from care managementSeneviratne, M. G., Li, R. C., Schreier, M., Lopez-Martinez, D., Patel, B. S., Yakubovich, A., Kemp, J. B., Loreaux, E., Gamble, P., El-Khoury, K., Vardoulakis, L., Wong, D., Desai, J., Chen, J. H., Morse, K. E., Downing, N. L., Finger, L. T., Chen, M.-J. & Shah, N.
-
publicaciones
Boosting the interpretability of clinical risk scores with intervention predictionsLoreaux, E., Yu, K., Kemp, J., Seneviratne, M., Chen, C., Roy, S., Protsyuk, I., Harris, N., D’Amour, A., Yadlowsky, S. & Chen, M.-J.
-
publicaciones
Deciphering clinical abbreviations with a privacy protecting machine learning systemRajkomar, A., Loreaux, E., Liu, Y., Kemp, J., Li, B., Chen, M.-J., Zhang, Y., Mohiuddin, A. & Gottweis, J.
-
publicaciones
Structured understanding of assessment and plans in clinical documentationStupp, D., Barequet, R., Lee, I.-C., Oren, E., Feder, A., Benjamini, A., Hassidim, A., Matias, Y., Ofek, E. & Rajkomar, A.
-
publicaciones
Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routingRoy, S., Mincu, D., Loreaux, E., Mottram, A., Protsyuk, I., Harris, N., Xue, Y., Schrouff, J., Montgomery, H., Connell, A., Tomasev, N., Karthikesalingam, A. & Seneviratne, M.
-
publicaciones
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health recordsTomašev, N., Harris, N., Baur, S., Mottram, A., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Magliulo, V., Meyer, C., Ravuri, S., Protsyuk, I., Connell, A., Hughes, C. O., Karthikesalingam, A., Cornebise, J., Montgomery, H., Rees, G., Laing, C., Baker, C. R., Osborne, T. F., Reeves, R., Hassabis, D., King, D., Suleyman, M., Back, T., Nielson, C., Seneviratne, M. G., Ledsam, J. R. & Mohamed, S.
-
publicaciones
Learning to Select Best Forecast Tasks for Clinical Outcome PredictionXue Y, Du N, Mottram A, Seneviratne A, Dai AM.
-
publicaciones
Deep State-Space Generative Model For Correlated Time-to-Event PredictionsXue Y, Zhou D, Du N, Dai A, Xu Z, Zhang K, Cui C.
-
publicaciones
Graph convolutional transformer: Learning the graphical structure of electronic health recordsChoi E, Xu Z, Li Y, Dusenberry MW, Flores G, Xue Y, Dai AM.
-
publicaciones
Analyzing the role of model uncertainty for electronic health recordsDusenberry MW, Tran D, Choi E, Kemp J, Nixon J, Jerfel G, Heller K, & Dai AM.
-
publicaciones
Explaining an increase in predicted risk for clinical alertsHardt M, Rajkomar A, Flores G, Dai A, Howell M, Corrado G, Cui C, & Hardt M.
-
publicaciones
Predicting inpatient medication orders from electronic health record dataRough, K., Dai, A. M., Zhang, K., Xue, Y., Vardoulakis, L. M., Cui, C., Butte, A. J., Howell, M. D. & Rajkomar, A.
-
publicaciones
A clinically applicable approach to continuous prediction of future acute kidney injuryTomašev, N., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Mottram, A., Meyer, C., Ravuri, S., Protsyuk, I., Connell, A., Hughes, C. O., Karthikesalingam, A., Cornebise, J., Montgomery, H., Rees, G., Laing, C., Baker, C. R., Peterson, K., Reeves, R., Hassabis, D., King, D., Suleyman, M., Back, T., Nielson, C., Ledsam, J. R. & Mohamed, S.
-
publicaciones
Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissionsConnell, A., Montgomery, H., Martin, P., Nightingale, C., Sadeghi-Alavijeh, O., King, D., Karthikesalingam, A., Hughes, C., Back, T., Ayoub, K., Suleyman, M., Jones, G., Cross, J., Stanley, S., Emerson, M., Merrick, C., Rees, G., Laing, C. & Raine, R.
-
publicaciones
Implementation of a Digitally Enabled Care Pathway (Part 1): Impact on Clinical Outcomes and Associated Health Care CostsConnell A., Raine R., Martin P., Barbosa E.C., Morris S., Nightingale C., Sadeghi-Alavijeh O., King D., Karthikesalingam A., Hughes C., Back T., Ayoub K., Suleyman M., Jones G., Cross J., Stanley S., Emerson M., Merrick C., Rees G., Montgomery H., & Laing C.
-
publicaciones
Implementation of a Digitally Enabled Care Pathway (Part 2): Qualitative Analysis of Experiences of Health Care ProfessionalsConnell A, Black G, Montgomery H, Martin P, Nightingale C, King D, Karthikesalingam A, Hughes C, Back T, Ayoub K, Suleyman M, Jones G, Cross J, Stanley S, Emerson M, Merrick C, Rees G, Laing C, & Raine R.
-
publicaciones
Improved Patient Classification with Language Model Pretraining Over Clinical NotesKemp J, Rajkomar A, & Dai AM.
-
publicaciones
Federated and Differentially Private Learning for Electronic Health RecordsPfohl SR, Dai AM, & Heller K.
-
publicaciones
Deep Physiological State Space Model for Clinical ForecastingXue Y, Zhou D, Du N, Dai AM, Xu Z, Zhang K,& Cui C.
-
publicaciones
Modelling EHR timeseries by restricting feature interactionZhang K, Xue Y, Flores G, Rajkomar A, Cui C, & Dai AM.
-
publicaciones
Scalable and accurate deep learning with electronic health recordsRajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J.
-
entradas de blog
Developing an aging clock using deep learning on retinal imagesby Sara Ahadi & Andrew Carroll
-
entradas de blog
Detecting novel systemic biomarkers in external eye photoby Boris Babenko & Akib Uddin
-
entradas de blog
The Check Up: our latest health AI developmentsby Greg Corrado
-
entradas de blog
Detecting Signs of Disease from External Images of the Eyeby Boris Babenko & Naama Hammel
-
entradas de blog
How AI could predict sight-threatening eye conditionsby Terry Spitz & Jim Winkens
-
entradas de blog
Using AI to predict retinal disease progressionby Jason Yim, Reena Chopra, Jeffrey De Fauw & Joseph Ledsam
-
entradas de blog
Detecting hidden signs of anemia from the eyeby Akinori Mitani
-
entradas de blog
Assessing Cardiovascular Risk Factors with Computer Visionby Lily Peng
-
publicaciones
Using generative AI to investigate medical imagery models and datasetsLang, O., Yaya-Stupp, D., Traynis, I., Cole-Lewis, H., Bennett, C. R., Lyles, C. R., Lau, C., Irani, M., Semturs, C., Webster, D. R., Corrado, G. S., Hassidim, A., Matias, Y., Liu, Y., Hammel, N. & Babenko, B.
-
publicaciones
Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clockAhadi, S., Wilson, K. A., Jr, Babenko, B., McLean, C. Y., Bryant, D., Pritchard, O., Kumar, A., Carrera, E. M., Lamy, R., Stewart, J. M., Varadarajan, A., Berndl, M., Kapahi, P. & Bashir, A.
-
publicaciones
A deep learning model for novel systemic biomarkers in photographs of the external eye: a retrospective study.Babenko, B., Traynis, I., Chen, C., Singh, P., Uddin, A., Cuadros, J., Daskivich, L. P., Maa, A. Y., Kim, R., Kang, E. Y.-C., Matias, Y., Corrado, G. S., Peng, L., Webster, D. R., Semturs, C., Krause, J., Varadarajan, A. V., Hammel, N. & Liu, Y.
-
publicaciones
Detection of signs of disease in external photographs of the eyes via deep learningBabenko, B., Mitani, A., Traynis, I., Kitade, N., Singh, P., Maa, A. Y., Cuadros, J., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A., Hammel, N. & Liu, Y.
-
publicaciones
Deep learning to detect optical coherence tomography-derived diabetic macular edema from retinal photographs: a multicenter validation studyLiu, X., Ali, T. K., Singh, P., Shah, A., McKinney, S. M., Ruamviboonsuk, P., Turner, A. W., Keane, P. A., Chotcomwongse, P., Nganthavee, V., Chia, M., Huemer, J., Cuadros, J., Raman, R., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N., Varadarajan, A. V., Liu, Y., Chopra, R. & Bavishi, P.
-
publicaciones
Retinal fundus photographs capture hemoglobin loss after blood donationMitani, A., Traynis, I., Singh, P., Corrado, G. S., Webster, D. R., Peng, L. H., Varadarajan, A. V., Liu, Y. & Hammel, N.
-
publicaciones
Predicting the risk of developing diabetic retinopathy using deep learningBora, A., Balasubramanian, S., Babenko, B., Virmani, S., Venugopalan, S., Mitani, A., de Oliveira Marinho, G., Cuadros, J., Ruamviboonsuk, P., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Hammel, N., Liu, Y. & Bavishi, P.
-
publicaciones
Quantitative analysis of optical coherence tomography for neovascular age-related macular degeneration using deep learningMoraes, G., Fu, D. J., Wilson, M., Khalid, H., Wagner, S. K., Korot, E., Ferraz, D., Faes, L., Kelly, C. J., Spitz, T., Patel, P. J., Balaskas, K., Keenan, T. D. L., Keane, P. A. & Chopra, R.
-
publicaciones
Scientific Discovery by Generating Counterfactuals Using Image TranslationNarayanaswamy, A., Venugopalan, S., Webster, D. R., Peng, L., Corrado, G. S., Ruamviboonsuk, P., Bavishi, P., Brenner, M., Nelson, P. C. & Varadarajan, A. V.
-
publicaciones
Predicting conversion to wet age-related macular degeneration using deep learningYim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., Moraes, G., Meyer, C., Wilson, M., Dixon, J., Hughes, C., Rees, G., Khaw, P. T., Karthikesalingam, A., King, D., Hassabis, D., Suleyman, M., Back, T., Ledsam, J. R., Keane, P. A. & De Fauw, J.
-
publicaciones
Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learningVaradarajan, A. V., Bavishi, P., Ruamviboonsuk, P., Chotcomwongse, P., Venugopalan, S., Narayanaswamy, A., Cuadros, J., Kanai, K., Bresnick, G., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Nganthavee, V., Ledsam, J. R., Keane, P. A., Corrado, G. S., Peng, L. & Webster, D. R.
-
publicaciones
Detection of anaemia from retinal fundus images via deep learningMitani, A., Huang, A., Venugopalan, S., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N., Liu, Y. & Varadarajan, A. V.
-
publicaciones
Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep LearningBabenko, B., Balasubramanian, S., Blumer, K. E., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N. & Varadarajan, A. V.
-
publicaciones
Deep Learning for Predicting Refractive Error From Retinal Fundus Imagesaradarajan, A.V., Poplin, R., Blumer, K., Angermueller, C., Lesdam, J., Chopra, R., Keane, P.A., Corrado, G. S., Peng, L., Webster, D. R.
-
publicaciones
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learningPoplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., Peng, L., & Webster, D. R.
-
entradas de blog [more at OHS Blog]
5 ways Google is accelerating Health AI innovation in Africaby Yossi Mattia & Shravya Shetty
-
entradas de blog
Engaging with the Healthcare Developer Ecosystem in Indiaby Richa Tiwari
-
entradas de blog
Empowering Developers to Build Next Generation, Mobile-First Healthcare Solutionsby Richa Tiwari
-
entradas de blog
Manage FHIR Data from Android App with Open Health Stack and Google Cloudby Abirami Sukumaran & Omar Ismail
-
entradas de blog
7 ways Google Health is improving outcomes in Asia Pacificby Karen DeSalvo
-
entradas de blog
Our collaboration with WHO to improve public healthby Karen DeSalvo
-
entradas de blog
New tools to help developers build better health appsby Fred Hersch
-
entradas de blog
Our FHIR SDK for Android Developersby Katherine Chou & Sudhi Herle
-
entradas de blog
Working with the WHO to power digital health appsby Fred Hersch & Jing Tang
-
publicaciones
A full-STAC remedy for global digital health transformation: open standards, technologies, architectures and contentMehl, G. L., Seneviratne, M. G., Berg, M. L., Bidani, S., Distler, R. L., Gorgens, M., Kallander, K. E., Labrique, A. B., Landry, M. S., Leitner, C., Lubell-Doughtie, P. B., Marcelo, A. D., Matias, Y., Nelson, J., Nguyen, V., Nsengimana, J. P., Orton, M., Otzoy Garcia, D. R., Oyaole, D. R., Ratanaprayul, N., Roth, S., Schaefer, M. P., Settle, D., Tang, J., Tien-Wahser, B., Wanyee, S. & Hersch, F.
-
publicaciones
Collaborative Momentum: The 2023 State of the Digital Public Goods Ecosystem Report
-
entradas de blog
Health-specific embedding tools for dermatology and pathologyby Dave Steiner & Rory Pilgrim
-
entradas de blog
Accelerate AI development for Digital Pathology using EZ WSI DICOMWeb Python library -
entradas de blog
Using AI to Predict the Presence of Cancer Spreadby Justin Krogue, Yun Liu, Po-Hsuan Cameron Chen & Ellery A
-
entradas de blog
Learning from deep learning: a case study of feature discovery and validation in pathologyby Ellery Wulczyn and Yun Liu
-
entradas de blog
Pathology digitization and the fight against cancerby Karen DeSalvo
-
entradas de blog
Verily and Lumea Announce Development Partnership to Advance Digital Pathology in Prostate Cancer -
entradas de blog
An International Scientific Challenge for the Diagnosis and Gleason Grading of Prostate Cancerby Po-Hsuan Cameron Chen & Maggie Demkin
-
entradas de blog
The promise of using AI to help prostate cancer careby Po-Hsuan Cameron Chen & Yun Liu
-
entradas de blog
PAIR @ CHI 2021by People + AI Research
-
entradas de blog
Learning from deep learning: developing interpretable AI approaches in histopathology to predict patient prognosis and explore novel featuresby Dave Steiner, Yun Liu, Craig Mermel, Kurt Zatloukal, Heimo Muller, Markus Plass
-
entradas de blog
Defense Innovation Unit Selects Google Cloud to Help U.S. Military Health System with Predictive Cancer Diagnoses -
entradas de blog
Using AI to identify the aggressiveness of prostate cancerby Kunal Nagpal & Craig Mermel
-
entradas de blog
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Modelsby Timo Kohlberger & Yuan Liu
-
entradas de blog
Building SMILY, a Human-Centric, Similar-Image Search Tool for Pathologyby Narayan Hedge & Carrie Cai
-
entradas de blog
Improved Grading of Prostate Cancer Using Deep Learningby Martin Stumpe & Craig Mermel
-
entradas de blog
Applying Deep Learning to Metastatic Breast Cancer Detectionby Martin Stumpe & Craig Mermel
-
entradas de blog
An Augmented Reality Microscope for Cancer Detectionby Martin Stumpe & Craig Mermel
-
entradas de blog
Assisting Pathologists in Detecting Cancer with Deep Learningby Martin Stumpe & Lily Peng
-
publicaciones
An End-to-End Platform for Digital Pathology Using Hyperspectral Autofluorescence Microscopy and Deep Learning-Based Virtual HistologyMcNeil, C., Wong, P. F., Sridhar, N., Wang, Y., Santori, C., Wu, C.-H., Homyk, A., Gutierrez, M., Behrooz, A., Tiniakos, D., Burt, A. D., Pai, R. K., Tekiela, K., Cameron Chen, P.-H., Fischer, L., Martins, E. B., Seyedkazemi, S., Freedman, D., Kim, C. C. & Cimermancic, P.
-
publicaciones
Domain-specific optimization and diverse evaluation of self-supervised models for histopathologyLai, J., Ahmed, F., Vijay, S., Jaroensri, T., Loo, J., Vyawahare, S., Agarwal, S., Jamil, F., Matias, Y., Corrado, G. S., Webster, D. R., Krause, J., Liu, Y., Chen, P.-H. C., Wulczyn, E. & Steiner, D. F.
-
publicaciones
Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learningKrogue, J. D., Azizi, S., Tan, F., Flament-Auvigne, I., Brown, T., Plass, M., Reihs, R., Müller, H., Zatloukal, K., Richeson, P., Corrado, G. S., Peng, L. H., Mermel, C. H., Liu, Y., Chen, P.-H. C., Gombar, S., Montine, T., Shen, J., Steiner, D. F. & Wulczyn, E.
-
publicaciones
Pathologist Validation of a Machine Learning-Derived Feature for Colon Cancer Risk StratificationL’Imperio, V., Wulczyn, E., Plass, M., Müller, H., Tamini, N., Gianotti, L., Zucchini, N., Reihs, R., Corrado, G. S., Webster, D. R., Peng, L. H., Chen, P.-H. C., Lavitrano, M., Liu, Y., Steiner, D. F., Zatloukal, K. & Pagni, F.
-
publicaciones
Deep learning models for histologic grading of breast cancer and association with disease prognosisJaroensri, R., Wulczyn, E., Hegde, N., Brown, T., Flament-Auvigne, I., Tan, F., Cai, Y., Nagpal, K., Rakha, E. A., Dabbs, D. J., Olson, N., Wren, J. H., Thompson, E. E., Seetao, E., Robinson, C., Miao, M., Beckers, F., Corrado, G. S., Peng, L. H., Mermel, C. H., Liu, Y., Steiner, D. F. & Chen, P.-H. C.
-
publicaciones
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challengeBulten, W., Kartasalo, K., Chen, P.-H. C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., Steiner, D. F., van Boven, H., Vink, R., Hulsbergen-van de Kaa, C., van der Laak, J., Amin, M. B., Evans, A. J., van der Kwast, T., Allan, R., Humphrey, P. A., Grönberg, H., Samaratunga, H., Delahunt, B., Tsuzuki, T., Häkkinen, T., Egevad, L., Demkin, M., Dane, S., Tan, F., Valkonen, M., Corrado, G. S., Peng, L., Mermel, C. H., Ruusuvuori, P., Litjens, G. & Eklund, M.
-
publicaciones
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology imagesSadhwani, A., Chang, H.-W., Behrooz, A., Brown, T., Auvigne-Flament, I., Patel, H., Findlater, R., Velez, V., Tan, F., Tekiela, K., Wulczyn, E., Yi, E. S., Mermel, C. H., Hanks, D., Chen, P.-H. C., Kulig, K., Batenchuk, C., Steiner, D. F. & Cimermancic, P.
-
publicaciones
Determining breast cancer biomarker status and associated morphological features using deep learningGamble, P., Jaroensri, R., Wang, H., Tan, F., Moran, M., Brown, T., Flament-Auvigne, I., Rakha, E. A., Toss, M., Dabbs, D. J., Regitnig, P., Olson, N., Wren, J. H., Robinson, C., Corrado, G. S., Peng, L. H., Liu, Y., Mermel, C. H., Steiner, D. F. & Chen, P.-H. C.
-
publicaciones
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason gradingWulczyn, E., Nagpal, K., Symonds, M., Moran, M., Plass, M., Reihs, R., Nader, F., Tan, F., Cai, Y., Brown, T., Flament-Auvigne, I., Amin, M. B., Stumpe, M. C., Müller, H., Regitnig, P., Holzinger, A., Corrado, G. S., Peng, L. H., Chen, P.-H. C., Steiner, D. F., Zatloukal, K., Liu, Y. & Mermel, C. H.
-
publicaciones
Onboarding Materials as Boundary Objects for Developing AI AssistantsCai, C.J., Steiner, D., Wilcox, L., Terry, M. and Winter, S.
-
publicaciones
Interpretable survival prediction for colorectal cancer using deep learningWulczyn, E., Steiner, D. F., Moran, M., Plass, M., Reihs, R., Tan, F., Flament-Auvigne, I., Brown, T., Regitnig, P., Chen, P.-H. C., Hegde, N., Sadhwani, A., MacDonald, R., Ayalew, B., Corrado, G. S., Peng, L. H., Tse, D., Müller, H., Xu, Z., Liu, Y., Stumpe, M. C., Zatloukal, K. & Mermel, C. H.
-
publicaciones
Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate BiopsiesSteiner, D. F., Nagpal, K., Sayres, R., Foote, D. J., Wedin, B. D., Pearce, A., Cai, C. J., Winter, S. R., Symonds, M., Yatziv, L., Kapishnikov, A., Brown, T., Flament-Auvigne, I., Tan, F., Stumpe, M. C., Jiang, P.-P., Liu, Y., Chen, P.-H. C., Corrado, G. S., Terry, M. & Mermel, C. H.
-
publicaciones
Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy SpecimensNagpal, K., Foote, D., Tan, F., Liu, Y., Chen, P.-H. C., Steiner, D. F., Manoj, N., Olson, N., Smith, J. L., Mohtashamian, A., Peterson, B., Amin, M. B., Evans, A. J., Sweet, J. W., Cheung, C., van der Kwast, T., Sangoi, A. R., Zhou, M., Allan, R., Humphrey, P. A., Hipp, J. D., Gadepalli, K., Corrado, G. S., Peng, L. H., Stumpe, M. C. & Mermel, C. H.
-
publicaciones
Deep learning-based survival prediction for multiple cancer types using histopathology imagesWulczyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C. H., Chen, P.-H. C., Liu, Y. & Stumpe, M. C.
-
publicaciones
Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer DetectionKohlberger, T., Liu, Y., Moran, M., Chen, P.-H. C., Brown, T., Hipp, J. D., Mermel, C. H. & Stumpe, M. C.
-
publicaciones
An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosisChen, P.C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G.S., Hipp, J.D., Mermel, C.H., Stumpe, M. C.
-
publicaciones
Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for PathologistsLiu, Y., Kohlberger, T., Norouzi, M., Dahl, G. E., Smith, J. L., Mohtashamian, A., Olson, N., Peng, L.H., Hipp, J.D., Stumpe, M.C. (2019).
-
publicaciones
Similar image search for histopathology: SMILYHegde, N., Hipp, J. D., Liu, Y., Emmert-Buck, M., Reif, E., Smilkov, D., Terry, M., Cai, C. J., Amin, M. B., Mermel, C. H., Nelson, P. Q., Peng, L. H., Corrado, G. S. & Stumpe, M. C.
-
publicaciones
"Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-MakingCai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M.
-
publicaciones
Human-centered tools for coping with imperfect algorithms during medical decision-makingCai, C.J., Reif, E., Hegde, N., Hipp, J., Kim, B., Smilkov, D., Wattenberg, M., Viegas, F., Corrado, G.S., Stumpe, M.C. and Terry, M.
-
publicaciones
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancerNagpal, K., Foote, D., Liu, Y., Chen, P.H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L., Mohtashamian, A., Wren, J.H., Corrado, G.S., MacDonald, R., Peng, L. H., Amin, M.B., Evans, A.J., Sanjoi, A.R., Mermel, C. H., Hipp, J. D., Stumpe, M. C.
-
publicaciones
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast CancerSteiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., Stumpe, M.C.
-
publicaciones
Detecting cancer metastases on gigapixel pathology imagesLiu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S. and Hipp, J.D., Peng, L., Stumpe, M. C.
-
entradas de blog
How AI is helping advance women’s health around the world -
entradas de blog
New anonymized smartphone data reveals it often takes more time than expected to access healthcare in the real world: Using aggregated and anonymized data from over 100 countries to quantify inequities in access to healthcareby Kristina Gligoric
-
entradas de blog
5 ways Google is accelerating Health AI innovation in Africaby Yossi Mattia & Shravya Shetty
-
entradas de blog
How we’re using AI to combat floods, wildfires and extreme heatby Yossi Matias
-
entradas de blog
How we’re supporting access to emergency maternal care in Nigeriaby Charlotte Stanton
-
entradas de blog
How we’re helping people and cities adapt to extreme heatby Kate Brandt
-
entradas de blog
New tools to support vaccine access and distributionby Tomer Shekel
-
entradas de blog
An update on our efforts to help Americans navigate COVID-19by Ruth Porat
-
entradas de blog
Making data useful for public healthby Katherine Chou
-
entradas de blog
Using symptoms search trends to inform COVID-19 researchby Evgeniy Gabrilovich
-
entradas de blog
Helping public health officials combat COVID-19by Jen Fitzpatrick & Karen DeSalvo
-
entradas de blog
New Insights into Human Mobility with Privacy Preserving Aggregationby Adam Sadilek & Xerxes Dotiwalla
-
publicaciones
Socio-spatial equity analysis of relative wealth index and emergency obstetric care accessibility in urban NigeriaWong, K. L. M., Banke-Thomas, A., Olubodun, T., Macharia, P. M., Stanton, C., Sundararajan, N., Shah, Y., Prasad, G., Kansal, M., Vispute, S., Shekel, T., Ogunyemi, O., Gwacham-Anisiobi, U., Wang, J., Abejirinde, I.-O. O., Makanga, P. T., Afolabi, B. B. & Beňová, L.
-
publicaciones
Revealed versus potential spatial accessibility of healthcare and changing patterns during the COVID-19 pandemicGligorić, K., Kamath, C., Weiss, D. J., Bavadekar, S., Liu, Y., Shekel, T., Schulman, K. & Gabrilovich, E.
-
publicaciones
A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbationsMacharia, P. M., Wong, K. L. M., Olubodun, T., Beňová, L., Stanton, C., Sundararajan, N., Shah, Y., Prasad, G., Kansal, M., Vispute, S., Shekel, T., Gwacham-Anisiobi, U., Ogunyemi, O., Wang, J., Abejirinde, I.-O. O., Makanga, P. T., Afolabi, B. B. & Banke-Thomas, A.
-
publicaciones
Comparing access to urban parks across six OECD countriesVeneri, P., Kaufmann, T., Vispute, S., Shekel, T., Gabrilovich, E., Wellenius, G. A., Dijkstra, L. & Kansal, M.
-
publicaciones
Identifying COVID-19 Vaccine Deserts and Ways to Reduce Them: A Digital Tool to Support Public Health Decision-MakingWeintraub, R. L., Miller, K., Rader, B., Rosenberg, J., Srinath, S., Woodbury, S. R., Schultheiss, M. D., Kansal, M., Vispute, S., Serghiou, S., Flores, G., Kumok, A., Shekel, T., Gabrilovich, E., Ahmad, I., Chiang, M. E. & Brownstein, J. S.
-
publicaciones
Dense Feature Memory Augmented Transformers for COVID-19 Vaccination Search ClassificationGupta, J., Tay, Y., Kamath, C., Tran, V., Metzler, D., Bavadekar, S., Sun, M. & Gabrilovich, E.
-
publicaciones
An evaluation of Internet searches as a marker of trends in population mental health in the USVaidyanathan, U., Sun, Y., Shekel, T., Chou, K., Galea, S., Gabrilovich, E. & Wellenius, G. A.
-
publicaciones
COVID-19 Open-Data a global-scale spatially granular meta-dataset for coronavirus diseaseWahltinez, O., Cheung, A., Alcantara, R., Cheung, D., Daswani, M., Erlinger, A., Lee, M., Yawalkar, P., Lê, P., Navarro, O. P., Brenner, M. P. & Murphy, K.
-
publicaciones
Vaccine Search Patterns Provide Insights into Vaccination IntentMalahy, S., Sun, M., Spangler, K., Leibler, J., Lane, K., Bavadekar, S., Kamath, C., Kumok, A., Sun, Y., Gupta, J., Griffith, T., Boulanger, A., Young, M., Stanton, C., Mayer, Y., Smith, K., Shekel, T., Chou, K., Corrado, G., Levy, J., Szpiro, A., Gabrilovich, E. & Wellenius, G. A.
-
publicaciones
Google COVID-19 Vaccination Search Insights: Anonymization Process DescriptionBavadekar, S., Boulanger, A., Davis, J., Desfontaines, D., Gabrilovich, E., Gadepalli, K., Ghazi, B., Griffith, T., Gupta, J., Kamath, C., Kraft, D., Kumar, R., Kumok, A., Mayer, Y., Manurangsi, P., Patankar, A., Perera, I. M., Scott, C., Shekel, T., Miller, B., Smith, K., Stanton, C., Sun, M., Young, M. & Wellenius, G.
-
publicaciones
Early social distancing policies in Europe, changes in mobility & COVID-19 case trajectories: Insights from Spring 2020Woskie, L. R., Hennessy, J., Espinosa, V., Tsai, T. C., Vispute, S., Jacobson, B. H., Cattuto, C., Gauvin, L., Tizzoni, M., Fabrikant, A., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Stanton, C., Bavadekar, S., Abueg, M., Hogue, M., Oplinger, A., Chou, K., Corrado, G., Shekel, T., Jha, A. K., Wellenius, G. A. & Gabrilovich, E.
-
publicaciones
Impacts of social distancing policies on mobility and COVID-19 case growth in the USWellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Dai, A., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Mandayam, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B. H., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
-
publicaciones
Forecasting influenza activity using machine-learned mobility mapVenkatramanan, S., Sadilek, A., Fadikar, A., Barrett, C. L., Biggerstaff, M., Chen, J., Dotiwalla, X., Eastham, P., Gipson, B., Higdon, D., Kucuktunc, O., Lieber, A., Lewis, B. L., Reynolds, Z., Vullikanti, A. K., Wang, L. & Marathe, M.
-
publicaciones
Global maps of travel time to healthcare facilitiesWeiss, D. J., Nelson, A., Vargas-Ruiz, C. A., Gligorić, K., Bavadekar, S., Gabrilovich, E., Bertozzi-Villa, A., Rozier, J., Gibson, H. S., Shekel, T., Kamath, C., Lieber, A., Schulman, K., Shao, Y., Qarkaxhija, V., Nandi, A. K., Keddie, S. H., Rumisha, S., Amratia, P., Arambepola, R., Chestnutt, E. G., Millar, J. J., Symons, T. L., Cameron, E., Battle, K. E., Bhatt, S. & Gething, P. W.
-
publicaciones
Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington stateAbueg, M., Hinch, R., Wu, N., Liu, L., Probert, W. J. M., Wu, A., Eastham, P., Shafi, Y., Rosencrantz, M., Dikovsky, M., Cheng, Z., Nurtay, A., Abeler-Dörner, L., Bonsall, D. G., McConnell, M. V., O’Banion, S. & Fraser, C.
-
publicaciones
Google COVID-19 Search Trends Symptoms Dataset: Anonymization Process Description (version 1.0)Bavadekar, S., Dai, A., Davis, J., Desfontaines, D., Eckstein, I., Everett, K., Fabrikant, A., Flores, G., Gabrilovich, E., Gadepalli, K., Glass, S., Huang, R., Kamath, C., Kraft, D., Kumok, A., Marfatia, H., Mayer, Y., Miller, B., Pearce, A., Perera, I. M., Ramachandran, V., Raman, K., Roessler, T., Shafran, I., Shekel, T., Stanton, C., Stimes, J., Sun, M., Wellenius, G. & Zoghi, M.
-
publicaciones
Impacts of State-Level Policies on Social Distancing in the United States Using Aggregated Mobility Data during the COVID-19 PandemicWellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
-
publicaciones
Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.0)Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C., Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T., Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B. & Wilson, R. J.
-
publicaciones
Assessing the impact of coordinated COVID-19 exit strategies across EuropeRuktanonchai, N. W., Floyd, J. R., Lai, S., Ruktanonchai, C. W., Sadilek, A., Rente-Lourenco, P., Ben, X., Carioli, A., Gwinn, J., Steele, J. E., Prosper, O., Schneider, A., Oplinger, A., Eastham, P. & Tatem, A. J.
-
publicaciones
Lymelight: forecasting Lyme disease risk using web search dataSadilek, A., Hswen, Y., Bavadekar, S., Shekel, T., Brownstein, J. S. & Gabrilovich, E.
-
publicaciones
Hierarchical organization of urban mobility and its connection with city livabilityBassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gallotti, R., Ghoshal, G., Gipson, B., Hazarie, S. A., Kautz, H., Kucuktunc, O., Lieber, A., Sadilek, A., & Ramasco, J. J.
-
publicaciones
Machine-learned epidemiology: real-time detection of foodborne illness at scaleSadilek, A., Caty, S., DiPrete, L., Mansour, R., Schenk Jr., T., Bergtholdt, M., Jha, A., Ramaswami P., & Gabrilovich E.
-
entradas de blog
Computer-aided diagnosis for lung cancer screeningby Atilla Kiraly & Rory Pilgrim
-
entradas de blog
How AI supports early disease detection in Indiaby Shravya Shetty
-
entradas de blog
How AI is helping advance women’s health around the world -
entradas de blog
5 ways Google is accelerating Health AI innovation in Africaby Yossi Matias & Shravya Shetty
-
entradas de blog
7 ways Google Health is improving outcomes in Asia Pacificby Karen DeSalvo
-
entradas de blog
On-device fetal ultrasound assessment with TensorFlow Liteby Angelica Willis & Akib Uddin
-
entradas de blog
6 ways Google is working with AI in Africaby Perry Nelson & Aisha Walcott-Bryant
-
entradas de blog
Our latest health AI research updatesby Greg Corrado & Yossi Matias
-
entradas de blog
7 ways Google is using AI to help solve society's challengesby Katie Malczyk
-
entradas de blog
Partnering with iCAD to improve breast cancer screeningby Greg Corrado
-
entradas de blog
How AI can help in the fight against breast cancerby Nicole Linton
-
entradas de blog
Simplified Transfer Learning for Chest Radiography Model Developmentby Akib Uddin & Andrew Sellergren
-
entradas de blog
The Check Up: our latest health AI developmentsby Greg Corrado
-
entradas de blog
Mammography collaboration in Japan -
entradas de blog
Detecting Abnormal Chest X-rays using Deep Learningby Zaid Nabulsi & Po-Hsuan Cameron Chen
-
entradas de blog
Tackling tuberculosis screening with AIby Rory Pilgrim & Shruthi Prabhakara
-
entradas de blog
Using artificial intelligence in breast cancer screeningby Sunny Jansen & Krish Eswaran
-
entradas de blog
Exploring AI for radiotherapy planning with Mayo Clinicby Cian Hughes
-
entradas de blog
Using AI to improve breast cancer screeningby Shravya Shetty & Daniel Tse
-
entradas de blog
Developing Deep Learning Models for Chest X-rays with Adjudicated Image Labelsby Dave Steiner & Shravya Shetty
-
entradas de blog
A promising step forward for predicting lung cancerby Shravya Shetty
-
publicaciones
Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and JapanKiraly, A. P., Cunningham, C. A., Najafi, R., Nabulsi, Z., Yang, J., Lau, C., Ledsam, J. R., Ye, W., Ardila, D., McKinney, S. M., Pilgrim, R., Liu, Y., Saito, H., Shimamura, Y., Etemadi, M., Melnick, D., Jansen, S., Corrado, G. S., Peng, L., Tse, D., Shetty, S., Prabhakara, S., Naidich, D. P., Beladia, N. & Eswaran, K.
-
publicaciones
Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planningLucido, J. J., DeWees, T. A., Leavitt, T. R., Anand, A., Beltran, C. J., Brooke, M. D., Buroker, J. R., Foote, R. L., Foss, O. R., Gleason, A. M., Hodge, T. L., Hughes, C. O., Hunzeker, A. E., Laack, N. N., Lenz, T. K., Livne, M., Morigami, M., Moseley, D. J., Undahl, L. M., Patel, Y., Tryggestad, E. J., Walker, M. Z., Zverovitch, A. & Patel, S. H.
-
publicaciones
Development of a Machine Learning Model for Sonographic Assessment of Gestational AgeLee, C., Willis, A., Chen, C., Sieniek, M., Watters, A., Stetson, B., Uddin, A., Wong, J., Pilgrim, R., Chou, K., Tse, D., Shetty, S. & Gomes, R. G.
-
publicaciones
A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessmentGomes, R. G., Vwalika, B., Lee, C., Willis, A., Sieniek, M., Price, J. T., Chen, C., Kasaro, M. P., Taylor, J. A., Stringer, E. M., McKinney, S. M., Sindano, N., Dahl, G. E., Goodnight, W., Gilmer, J., Chi, B. H., Lau, C., Spitz, T., Saensuksopa, T., Liu, K., Tiyasirichokchai, T., Wong, J., Pilgrim, R., Uddin, A., Corrado, G., Peng, L., Chou, K., Tse, D., Stringer, J. S. A. & Shetty, S.
-
publicaciones
Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of RadiologistsKazemzadeh, S., Yu, J., Jamshy, S., Pilgrim, R., Nabulsi, Z., Chen, C., Beladia, N., Lau, C., McKinney, S. M., Hughes, T., Kiraly, A. P., Kalidindi, S. R., Muyoyeta, M., Malemela, J., Shih, T., Corrado, G. S., Peng, L., Chou, K., Chen, P.-H. C., Liu, Y., Eswaran, K., Tse, D., Shetty, S. & Prabhakara, S.
-
publicaciones
Simplified Transfer Learning for Chest Radiography Models Using Less DataSellergren, A. B., Chen, C., Nabulsi, Z., Li, Y., Maschinot, A., Sarna, A., Huang, J., Lau, C., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Liu, Y., Eswaran, K., Tse, D., Beladia, N., Krishnan, D. & Shetty, S.
-
publicaciones
Study Design: Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planningAnand, A., Beltran, C. J., Brooke, M. D., Buroker, J. R., DeWees, T. A., Foote, R. L., Foss, O. R., Hughes, C. O., Hunzeker, A. E., John Lucido, J., Morigami, M., Moseley, D. J., Pafundi, D. H., Patel, S. H., Patel, Y., Ridgway, A. K., Tryggestad, E. J., Wilson, M. Z., Xi, L. & Zverovitch, A.
-
publicaciones
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19Nabulsi, Z., Sellergren, A., Jamshy, S., Lau, C., Santos, E., Kiraly, A. P., Ye, W., Yang, J., Pilgrim, R., Kazemzadeh, S., Yu, J., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Corrado, G. S., Peng, L., Eswaran, K., Tse, D., Beladia, N., Liu, Y., Chen, P.-H. C. & Shetty, S.
-
publicaciones
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation StudyNikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., Patel, Y., Meyer, C., Askham, H., Romera-Paredes, B., Kelly, C., Karthikesalingam, A., Chu, C., Carnell, D., Boon, C., D’Souza, D., Moinuddin, S. A., Garie, B., McQuinlan, Y., Ireland, S., Hampton, K., Fuller, K., Montgomery, H., Rees, G., Suleyman, M., Back, T., Hughes, C. O., Ledsam, J. R. & Ronneberger, O.
-
publicaciones
Improving reference standards for validation of AI-based radiographyDuggan, G. E., Reicher, J. J., Liu, Y., Tse, D. & Shetty, S.
-
publicaciones
International evaluation of an AI system for breast cancer screeningMcKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., Melnick, D., Mostofi, H., Peng, L., Reicher, J. J., Romera-Paredes, B., Sidebottom, R., Suleyman, M., Tse, D., Young, K. C., De Fauw, J. & Shetty, S.
-
publicaciones
Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted EvaluationMajkowska, A., Mittal, S., Steiner, D. F., Reicher, J. J., McKinney, S. M., Duggan, G. E., Eswaran, K., Cameron Chen, P.-H., Liu, Y., Kalidindi, S. R., Ding, A., Corrado, G. S., Tse, D. & Shetty, S.
-
publicaciones
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyArdila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reciher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., Shetty, S.
-
entradas de blog [más en Blog oficial de YouTube]
How we’re using AI to connect people to health informationGoogle Keyword Blog | 19-Mar-2024
-
entradas de blog
Safer Internet Day: Supporting teen mental health and wellbeing on YouTubeby The YouTube Team
-
entradas de blog
Elevating first aid information on YouTube searchby Garth Graham
-
entradas de blog
How AI helps make public health truly publicby Garth Graham
-
entradas de blog
Continued support for teen wellbeing and mental health on YouTubeby James Beser
-
entradas de blog
Expanding equitable access to health information on YouTubeby Garth Graham
-
entradas de blog [más en Blog oficial de YouTube]
A long term vision for YouTube’s medical misinformation policiesYoutube Official Blog
-
entradas de blog
New ways for UK licensed healthcare professionals to reach viewers on YouTubeYoutube Official Blog
-
entradas de blog
Mental Health Action Day: Small steps to support your mental healthYoutube Official Blog
-
entradas de blog
An updated approach to eating disorder-related contentby Garth Graham
-
entradas de blog
Finding connection and support this World Mental Health Dayby Jessica DiVento Dzuban
-
entradas de blog
Expanding clinicians’ access to Continuing Educationby Garth Graham
-
entradas de blog
8 things we launched in 2022 to support your healthby Iz Conroy
-
entradas de blog
New ways for licensed healthcare professionals to reach people on YouTubeby Garth Graham
-
entradas de blog
Answering the human questions: How we’re putting patient voices front and centerby Garth Graham
-
entradas de blog
Our work toward health equityby Ivor Horn
-
entradas de blog
Introducing THE-IQ: tackling health equity with YouTube Health and Kaiser Family Foundationby Garth Graham
-
entradas de blog
New ways to answer your health questions in the United Kingdomby Garth Graham
-
entradas de blog
The Check Up: helping people live healthier livesby Karen DeSalvo
-
entradas de blog
Answering your health questions in Brazil, India, and Japanby Garth Graham
-
entradas de blog
Access to information is a health equity issue. Here’s how YouTube is helping make high quality health information available to everyoneby Garth Graham
-
entradas de blog
Doctors bring their expertise on vaccines to YouTubeby Garth Graham
-
entradas de blog
Introducing new ways to help you find answers to your health questionsby Garth Graham