Health research publications
Blog Posts [more at Google Keyword Blog & Google Research Blog]
-
Google France hosted a hackathon to tackle healthcare's biggest challenges
by Joelle Barral
Google Keyword Blog | 15-Jul-2025 -
AI breakthroughs are bringing hope to cancer research and treatment
by Ruth Porat
4-Jun-2025 -
Google Research at Google I/O 2025
by Yossi Matias
Google Keyword Blog | 22-May-2025 -
100 things we announced at I/O
by Molly McHugh-Johnson
Google Keyword Blog | 21-May-2025 -
How we're using AI to drive scientific research with greater real-world benefit
by Yossi Matias
Google Keyword Blog | 8-May-2025 -
25 startups using AI to transform healthcare
by Karen DeSalvo
Google Keyword Blog | 7-Apr-2025 -
The Check Up with Google
by Karen DeSalvo
Google Keyword Blog | 18-Mar-2025 -
6 health AI updates we shared at The Check Up
by Karen DeSalvo
Google Keyword Blog | 18-Mar-2025 -
How Gemini is improving care in Japanese hospitals
by Shohei Harase
Google Keyword Blog | 18-Mar-2025 -
Advancing healthcare and scientific discovery with AI
by Yossi Matias
Google Keyword Blog | 4-Mar-2025 -
Health Impact Report
by Karen DeSalvo
Google Keyword Blog | 25-Feb-2025 -
A new partnership to advance the treatment of women's cancer
by Karen DeSalvo
Google Keyword Blog | 12-Feb-2025 -
2024: A year of extraordinary progress and advancement in AI
by Demis Hassabis & James Manyika & Jeff Dean
Google Keyword Blog | 23-Jan-2025
-
Global AI Optimism Increases as Usage Grows
by Kent Walker
Google Public Policy Blog | 14-Jan-2025 -
Unlocking the potential of AI to transform medicine
by Shweta Maniar
Google Cloud Blog | 9-Jan-2025 -
Google Research 2024: Breakthroughs for impact at every scale
by Yossi Matias
Google Research Blog | 9-Dec-2024
-
The First Developer Preview of Android 16
by Matthew McCullough
Android Developers Blog | 18-Nov-2024 -
Google’s vision for a healthier future
by Karen DeSalvo
Google Keyword Blog | 1-Nov-2024 -
How gen AI can help doctors and nurses ease their administrative workloads
by Aashima Gupta
Google Keyword Blog | 17-Oct-2024
-
AI startups revolutionizing mental health care
by Karen DeSalvo
Google Keyword Blog | 10-Oct-2024 -
Supporting India’s digital health transformation
by Bakul Patel
Google Keyword Blog | 3-Oct-2024 -
4 principles to guide AI in supporting mental health
by Megan Jones Bell
Google Keyword Blog | 8-Aug-2024 -
Google Research at Google I/O 2024
by Yossi Matias & James Manyika
Google Research Blog | 24-May-2024 -
How 7 businesses are putting Google Cloud’s AI innovations to work
by Carrie Tharp
Google Keyword Blog | 4-Apr-2024 -
How we’re using AI to connect people to health information
by Karen DeSalvo
Google Keyword Blog | 19-Mar-2024 -
How AI is helping advance women’s health around the world
by Ronit Levavi Morad & Preeti Singh
Google Keyword Blog | 8-Mar-2024 -
A new commitment to digital wellbeing for kids and teens
by Karen DeSalvo
Google Keyword Blog | 6-Feb-2024 -
3 predictions for AI in healthcare in 2024
by Aashima Gupta
Google Keyword Blog | 9-Jan-2024 -
2023: A year of groundbreaking advances in AI and computing
by Jeff Dean, James Manyika, & Demis Hassabis
Google Research Blog | 22-Dec-2023 -
23 of our biggest moments in 2023
by Molly McHugh-Johnson
Google Keyword Blog | 20-Dec-2023 -
4 ways we think about health equity and AI
by Ivor Horn
Google Keyword Blog | 2-Nov-2023 -
5 ways Google is accelerating Health AI innovation in Africa
by Yossi Mattia Shravya Shetty
Google Keyword Blog | 31-Oct-2023 -
How we’re using AI to help transform healthcare
by Yossi Mattias
Google Keyword Blog | 23-Oct-2023 -
A new collaboration to improve nutrition information
by Nira Goren
Google Keyword Blog | 18-Oct-2023 -
HLTH 2023: Bringing AI to health responsibly
by Michaell Howell
Google Keyword Blog | 9-Oct-2023 -
How AI can improve health for everyone, everywhere
by Karen DeSalvo
Google Keyword Blog | 3-Oct-2023 -
7 ways Google Health is improving outcomes in Asia Pacific
by Karen DeSalvo
Google Keyword Blog | 18-Jul-2023 -
Looking to the next 75 years of the NHS
by Susan Thomas
Google Keyword Blog | 5-Jul-2023 -
New research from the UK focused on technology’s role in healthcare
by Susan Thomas
Google Keyword Blog | 13-Jun-2023 -
Our collaboration with WHO to improve public health
by Karen DeSalvo
Google Keyword Blog | 23-May-2023 -
Partnering with startups using AI to improve healthcare
by Karen DeSalvo
Google Keyword Blog | 22-May-2023 -
More mental health resources for the moments you need them
by Megan Jones Bell
Google Keyword Blog | 15-May-2023 -
3 ways Google products can help you feel less stressed
by Megan Jones Bell
Google Keyword Blog | 13-Apr-2023 -
New ways we’re helping people live healthier lives
by Karen DeSalvo
Google Keyword Blog | 14-Mar-2023 -
Our latest health AI research updates
by Greg Corrado & Yossi Matias
Google Keyword Blog | 14-Mar-2023 -
Google Research, 2022 & beyond: Health
by Greg Corrado & Yossi Matias
Google Research Blog | 23-Feb-2023 -
Meet our Health Equity Research Initiative awardees
by Ivor Horn
Google Keyword Blog | 26-Jan-2023 -
7 ways Google is using AI to help solve society's challenges
by Katie Malczyk
Google Keyword Blog | 17-Jan-2023 -
3 ways to take better care of your mind and body in 2023
by Megan Jones Bell
Google Keyword Blog | 5-Jan-2023 -
8 things we launched in 2022 to support your health
by Iz Conroy
Google Keyword Blog | 21-Dec-2022 -
How to use Google Search to help manage uncertain times
by Hema Budaraju
Google Keyword Blog | 14-Dec-2022 -
Unlocking the potential of technology to support health
by Karen DeSalvo
Google Keyword Blog | 15-Nov-2022 -
Healthy collaboration: Why partnerships are the heart of healthcare innovation
by Aashima Gupta
Google Cloud Blog | 14-Nov-2022 -
3 ways AI is scaling helpful technologies worldwide
by Jeff Dean
Google Keyword Blog | 2-Nov-2022 -
Democratizing access to health
by Karen DeSalvo
Google Keyword Blog | 27-Oct-2022 -
Google Assistant offers information and hope for Breast Cancer Awareness Month
by Riva Sciuto
Google Keyword Blog | 19-Oct-2022 -
Our work toward health equity
by Ivor Horn
Google Keyword Blog | 12-Sep-2022 -
Dr. Von Nguyen’s temperature check on public health
by Lauren Winer
Google Keyword Blog | 25-Aug-2022 -
Suicide prevention resources on Google Search
by Anne Merritt
Google Keyword Blog | 20-Jul-2022 -
Mental health resources you can count on
by Megan Jones Bell
Google Keyword Blog | 17-May-2022 -
Raising awareness of the dangers of fentanyl
by Megan Jones Bell & Garth Graham
Google Keyword Blog | 10-May-2022 -
The Check Up: helping people live healthier lives
by Karen DeSalvo
Google Keyword Blog | 24-Mar-2022 -
The Check Up: our latest health AI developments
by Greg Corrado
Google Research Blog | 24-Mar-2022 -
Extending Care Studio with a new healthcare partnership
by Paul Muret
Google Keyword Blog | 15-Mar-2022 -
Take a look at Conditions, our new feature in Care Studio
by Paul Muret
Google Keyword Blog | 8-Mar-2022 -
Google Research: Themes from 2021 and Beyond
by Jeff Dean
Google Research Blog | 11-Jan-2022 -
Making healthcare options more accessible on Search
by Hema Budaraju
Google Keyword Blog | 2-Dec-2021 -
HLTH: Building on our commitments in health
by Karen DeSalvo
Google Keyword Blog | 17-Oct-2021 -
When it comes to mental health, what are we searching for?
by Alicia Cormie
Google Keyword Blog | 6-May-2021 -
Dr. Ivor Horn talks about technology and health equity
by Alicia Cormie
Google Keyword Blog | 16-Apr-2021 -
Our Care Studio pilot is expanding to more clinicians
by Paul Muret
Google Keyword Blog | 23-Feb-2021 -
Google Research: Looking Back at 2020, and Forward to 2021
by Jeff Dean
Google Research Blog | 12-Jan-2021 -
A new Google Search tool to support women with postpartum depression
by David Feinberg
LinkedIn Blog | 8-Dec-2020 -
Prepare for medical visits with help from Google and AHRQ
by Dave Greenwood
Google Keyword Blog | 2-Dec-2020 -
A Collaborative Approach to Shaping Successful UX Critique Practices
by Anna Lurchenko
Google Design Blog | 29-Jul-2020 -
Learn more about anxiety with a self-assessment on Search
by Daniel Gillison, Jr
Google Keyword Blog | 28-May-2020 -
Google Research: Looking Back at 2019, and Forward to 2020 and Beyond
by Jeff Dean
Google Research Blog | 9-Jan-2020 -
Lessons Learned from Developing ML for Healthcare
by Yun Liu & Po-Hsuan Cameron Chen
Google Research Blog | 10-Dec-2019 -
Tools to help healthcare providers deliver better care
by David Feinberg
Google Keyword Blog | 20-Nov-2019 -
Breast cancer and tech...a reason for optimism
by Ruth Porat
Google Keyword Blog | 21-Oct-2019 -
DeepMind’s health team joins Google Health
by Dominic King
Google Keyword Blog | 18-Sep-2019 -
Looking Back at Google’s Research Efforts in 2018
by Jeff Dean
Google Research Blog | 15-Jan-2019 -
Meet David Feinberg, head of Google Health
by Google
Google Keyword Blog | 17-Jun-2019 -
AI for Social Good in Asia Pacific
by Kent Walter
Google Keyword Blog | 13-Dec-2018 -
The Google Brain Team — Looking Back on 2017 (Part 2 of 2)
by Jeff Dean
Google Research Blog | 12-Jan-2018 -
Gain a deeper understanding of Posttraumatic Stress Disorder on Google
by Paula Schnurr & Teri Brister
Google Keyword Blog | 5-Dec-2017 -
Learning more about clinical depression with the PHQ-9 questionnaire
by Mary Giliberti
Google Keyword Blog | 23-Aug-2017 -
Partnering on machine learning in healthcare
by Katherine Chou
Google Research Blog | 17-May-2017 -
The Google Brain Team — Looking Back on 2016
by Jeff Dean
Google Research Blog | 12-Jan-2017
COVID-19 blog posts [more at Google Keyword Blog]
-
Supporting evolving COVID information needs
by Hema Budaraju
Google Keyword Blog | 16-Jun-2022 -
Group effort: How we helped launch an NYC vaccine site
by Lauren Gallagher
Google Keyword Blog | 11-Feb-2022 -
This year, we searched for ways to stay healthy
by Hema Budaraju
Google Keyword Blog | 8-Dec-2021 -
New tools to support vaccine access and distribution
by Tomer Shekel
Google Keyword Blog | 9-Jun-2021 -
An update on our COVID response priorities
by the COVID Response team, Google India
Google India Blog | 10-May-2021 -
Our commitment to COVID-19 vaccine equity
by Karen DeSalvo
Google Keyword Blog | 15-Apr-2021 [Spanish version]
Learn more -
How anonymized data helps fight against disease
by Stephen Ratcliffe
Google Keyword Blog | 24-Feb-2021 -
How we’re helping get vaccines to more people
by Sundar Pichai
Google Keyword Blog | 25-Jan-2021 -
Exposure Notifications: end of year update
by Steph Hannon
Google Keyword Blog | 11-Dec-2020 -
How you'll find accurate and timely information on COVID-19 vaccines
by Karen DeSalvo & Kristie Canegallo
Google Keyword Blog | 10-Dec-2020 -
How I’m giving thanks (and staying safe) this Thanksgiving
by Karen DeSalvo
Google Keyword Blog | 24-Nov-2020 [Spanish version]
Learn more -
A Q&A on coronavirus vaccines
Google Keyword Blog |10-Nov-2020 -
An update on our efforts to help Americans navigate COVID-19
by Ruth Porat
Google Keyword Blog | 27-Oct-2020 -
Making data useful for public health
by Katherine Chou
Google Keyword Blog | 17-Sept-2020 -
Google supports COVID-19 AI and data analytics projects
by Mollie Javerbaum & Meghan Houghton
Google Keyword Blog | 10-Sep-2020 -
Using symptoms search trends to inform COVID-19 research
by Evgeniy Gabrilovich
Google Keyword Blog | 2-Sep-2020 -
An update on Exposure Notifications
by Dave Burke
Google Keyword Blog | 31-Jul-2020 -
Exposure Notification API launches to support public health agencies
by Apple & Google
Google Keyword Blog | 20-May-2020 -
Dr. Karen DeSalvo on ‘putting information first’ during COVID-19
by Megan Washam
Google Keyword Blog | 13-May-2020 -
Resources for mental health support during COVID-19
by David Feinberg
Google Keyword Blog | 8-May-2020 -
Helping you avoid COVID-19 online security risks
Google Africa Blog
Google Africa Blog | 23-Apr-2020 -
Apple and Google partner on COVID-19 contact tracing technology
by Apple & Google
Google Keyword Blog | 10-Apr-2020 -
Connecting people to virtual care options
by Julie Black
Google Keyword Blog | 10-Apr-2020 -
Support for public health workers fighting COVID-19
by Karen DeSalvo
Google Keyword Blog | 6-Apr-2020 -
Helping public health officials combat COVID-19
by Jen Fitzpatrick & Karen DeSalvo
Google Keyword Blog | 3-Apr-2020 -
Connecting people with COVID-19 information and resources
by Emily Moxley
Google Keyword Blog | 21-Mar-2020 -
COVID-19: How we’re continuing to help
by Sundar Pichai
Google Keyword Blog | 15-Mar-2020 -
Coronavirus: How we’re helping
by Sundar Pichai
Google Keyword Blog | 6-Mar-2020
Reviews
-
Prompting introspection
Shreibati, J. B.
Circulation 151, 1375–1377 (2025) -
AI's Capabilities Make It a Powerful Tool for Driving Societal Impact
Matias, Y., Hassidim, A., Nelson, P.
The National Academies Press. (2025) -
Oculomics: Current concepts and evidence
Zhu, Z., Wang, Y., Qi, Z., Hu, W., Zhang, X., Wagner, S. K., Wang, Y., Ran, A. R., Ong, J., Waisberg, E., Masalkhi, M., Suh, A., Tham, Y. C., Cheung, C. Y., Yang, X., Yu, H., Ge, Z., Wang, W., Sheng, B., Liu, Y., Lee, A. G., Denniston, A. K., van Wijngaarden, P., Keane, P. A., Cheng, C.-Y., He, M. & Wong, T. Y.
Prog. Retin. Eye Res. 106, 101350 (2025) -
Tackling algorithmic bias and promoting transparency in health datasets: the STANDING Together consensus recommendations
Alderman, J. E., Palmer, J., Laws, E., McCradden, M. D., Ordish, J., Ghassemi, M., Pfohl, S. R., Rostamzadeh, N., Cole-Lewis, H., Glocker, B., Calvert, M., Pollard, T. J., Gill, J., Gath, J., Adebajo, A., Beng, J., Leung, C. H., Kuku, S., Farmer, L.-A., Matin, R. N., Mateen, B. A., McKay, F., Heller, K., Karthikesalingam, A., Treanor, D., Mackintosh, M., Oakden-Rayner, L., Pearson, R., Manrai, A. K., Myles, P., Kumuthini, J., Kapacee, Z., Sebire, N. J., Nazer, L. H., Seah, J., Akbari, A., Berman, L., Gichoya, J. W., Righetto, L., Samuel, D., Wasswa, W., Charalambides, M., Arora, A., Pujari, S., Summers, C., Sapey, E., Wilkinson, S., Thakker, V., Denniston, A. & Liu, X.
Lancet Digit. Health 7, e64–e88 (2025). -
Inequalities in geographical access to emergency obstetric and newborn care
Banke-Thomas, A., Beňová, L., Ray, N., Wong, K. L., Stanton, C., Shetty, S. & Afolabi, B. B.
Bull. World Health Organ. 102, 837–839 (2024). -
Safety principles for medical summarization using generative AI
Obika, D., Kelly, C., Ding, N., Farrance, C., Krause, J., Mittal, P., Cheung, D., Cole-Lewis, H., Elish, M., Karthikesalingam, A., Webster, D., Patel, B. & Howell, M.
Nat. Med. 1–3 (2024). [readcube]
Learn more -
A multiparty collaboration to engage diverse populations in community-centered artificial intelligence research
Devon-Sand, A., Sayres, R., Liu, Y., Strachan, P., Smith, M. A., Nguyen, T., Ko, J. M. & Lin, S.
Mayo Clinic Proceedings: Digital Health 2, 463–469 (2024). -
The Opportunities and Risks of Large Language Models in Mental Health
Lawrence, H. R., Schneider, R. A., Rubin, S. B., Matarić, M. J., McDuff, D. J. & Jones Bell, M.
JMIR Ment Health 11, e59479 (2024). -
The Regulation of Clinical Artificial Intelligence
Blumenthal David & Patel Bakul.
NEJM AI 1, AIpc2400545 (2024). -
Generative artificial intelligence, patient safety and healthcare quality: a review
Howell, M. D.
BMJ Qual. Saf. (2024). -
AI in Action: Accelerating Progress Towards the Sustainable Development Goals
Gosselink, B. H., Brandt, K., Croak, M., DeSalvo, K., Gomes, B., Ibrahim, L., Johnson, M., Matias, Y., Porat, R., Walker, K. & Manyika, J.
arXiv [cs.CY] (2024). -
Transforming Public Health Practice With Generative Artificial Intelligence
Bharel, M., Auerbach, J., Nguyen, V. & DeSalvo, K. B.
Health Aff. 43, 776–782 (2024). -
Information is a determinant of health
Graham, G., Goren, N., Sounderajah, V. & DeSalvo, K.
Nat. Med. (2024). [readcube]
Learn more -
An intentional approach to managing bias in general purpose embedding models
Weng, W.-H., Sellergen, A., Kiraly, A. P., D’Amour, A., Park, J., Pilgrim, R., Pfohl, S., Lau, C., Natarajan, V., Azizi, S., Karthikesalingam, A., Cole-Lewis, H., Matias, Y., Corrado, G. S., Webster, D. R., Shetty, S., Prabhakara, S., Eswaran, K., Celi, L. A. G. & Liu, Y.
The Lancet Digital Health 6, e126–e130 (2024). -
Three Epochs of Artificial Intelligence in Health Care
Howell M., Corrado G., DeSalvo K.
JAMA. 331(3):242–244 (2024). -
Artificial intelligence in healthcare: a perspective from Google
Lehmann, L. S., Natarajan, V. & Peng, L. Chapter 39
(ed. Krittanawong, C.) Artificial Intelligence in Clinical Practice. 341–344 (Academic Press, 2024). -
Explaining counterfactual images
Lang, O., Traynis, I. & Liu, Y.
Nat Biomed Eng (2023).[readcube]
Learn more -
Beyond Predictions: Explainability and Learning from Machine Learning
Deng, C.-Y., Mitani, A., Chen, C. W., Peng, L. H., Hammel, N. & Liu, Y.
(eds. Yogesan, K., Goldschmidt, L., Cuadros, J. & Ricur, G.) 199–218. Springer International Publishing, 2023. [readcube]
Learn more -
Deep Learning for Epidemiologists: An introduction to neural networks
Serghiou, S. & Rough, K.
Am. J. Epidemiol. (2023). -
Building a Clinical Team in a Large Technology Company
DeSalvo Karen B. & Howell Michael D.
NEJM Catalyst non-issue commentary (2023). -
Medicine’s Role in Reimagining Public Health: Reuniting Panacea and Hygeia
DeSalvo, K. B., Kadakia, K. T. & Chokshi, D. A.
JAMA Health Forum 2, e214051–e214051 (2021). -
Modernizing Public Health Data Systems: Lessons From the Health Information Technology for Economic and Clinical Health (HITECH) Act
Kadakia, K. T., Howell, M. D. & DeSalvo, K. B.
JAMA 326, 385–386 (2021). -
Public Health 3.0 After COVID-19-Reboot or Upgrade?
DeSalvo, K. B. & Kadakia, K. T.
Am. J. Public Health 111, S179–S181 (2021). -
A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI
Sounderajah, V., Ashrafian, H., Rose, S., Shah, N. H., Ghassemi, M., Golub, R., Kahn, C. E., Jr, Esteva, A., Karthikesalingam, A., Mateen, B., Webster, D., Milea, D., Ting, D., Treanor, D., Cushnan, D., King, D., McPherson, D., Glocker, B., Greaves, F., Harling, L., Ordish, J., Cohen, J. F., Deeks, J., Leeflang, M., Diamond, M., McInnes, M. D. F., McCradden, M., Abràmoff, M. D., Normahani, P., Markar, S. R., Chang, S., Liu, X., Mallett, S., Shetty, S., Denniston, A., Collins, G. S., Moher, D., Whiting, P., Bossuyt, P. M. & Darzi, A.
Nat. Med. (2021). -
Evaluation of artificial intelligence on a reference standard based on subjective interpretation
Chen, P.-H. C., Mermel, C. H. & Liu, Y.
The Lancet Digital Health (2021). doi:10.1016/S2589-7500(21)00216-8 -
Artificial Intelligence in Medicine
Kelly, C. J., Brown, A. P. Y. & Taylor, J. A.
(eds. Lidströmer, N. & Ashrafian, H.) 1–18 (Springer International Publishing, 2021). -
Challenges of Accuracy in Germline Clinical Sequencing Data
Poplin, R., Zook, J. M. & DePristo, M.
JAMA 326, 268–269 (2021). -
Retinal detection of kidney disease and diabetes
Mitani, A., Hammel, N. & Liu, Y.
Nature Biomedical Engineering 1–3 (2021). [readcube]
Learn more -
Deep learning-enabled medical computer vision
Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J. & Socher, R.
npj Digital Medicine 4, 5 (2021). -
Closing the translation gap: AI applications in digital pathology
Steiner, D. F., Chen, P.-H. C. & Mermel, C. H.
Biochim. Biophys. Acta Rev. Cancer 1875, 188452 (2021). -
Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs
Liu, Y., Yang, L., Phene, S. & Peng, L.
Artificial Intelligence in Medicine 247–264 (2021). -
Resonate: Reaching Excellence Through Equity, Diversity, and Inclusion in ISMRM
Warnert, E. A. H., Kasper, L., Meltzer, C. C., Lightfoote, J. B., Bucknor, M. D., Haroon, H., Duggan, G., Gowland, P., Wald, L., Miller, K. L., Morris, E. A. & Anazodo, U. C.
J. Magn. Reson. Imaging (2020). doi:10.1002/jmri.27476 [readcube]
Learn more -
Current and future applications of artificial intelligence in pathology: a clinical perspective
Rakha, E. A., Toss, M., Shiino, S., Gamble, P., Jaroensri, R., Mermel, C. H. & Chen, P.-H. C.
J. Clin. Pathol. (2020). doi:10.1136/jclinpath-2020-206908 -
Artificial intelligence, machine learning and deep learning for eye care specialists
Sayres, R., Hammel, N. & Liu, Y.
Annals of Eye Science 5, 18–18 (2020). -
Artificial intelligence in digital breast pathology: Techniques and applications
Ibrahim, A., Gamble, P., Jaroensri, R., Abdelsamea, M. M., Mermel, C. H., Chen, P.-H. C. & Rakha, E. A.
Breast 49, 267–273 (2020). -
How to Read Articles That Use Machine Learning: Users’ Guides to the Medical Literature
Liu, Y., Chen, P.-H. C., Krause, J. & Peng, L.
JAMA 322, 1806–1816 (2019). [readcube]
Learn more -
Key challenges for delivering clinical impact with artificial intelligence
Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D.
BMC Med. 17, 195 (2019). -
Artificial Intelligence Approach in Melanoma
Curiel-Lewandrowski, C., Novoa, R. A., Berry, E., Celebi, M. E., Codella, N., Giuste, F., Gutman, D., Halpern, A., Leachman, S., Liu, Y., Liu, Y., Reiter, O. & Tschandl, P.
(eds. Fisher, D. E. & Bastian, B. C.) 599–628. Springer New York ( 2019). -
How to develop machine learning models for healthcare
Chen, C. P.-H., Liu, Y., & Peng, L.
Nat. Mater. 18, 410–414 (2019). [readcube]
Learn more -
Machine Learning in Medicine
Rajkomar, A., Dean, J., & Kohane I.
N. Engl. J. Med. 380:1347-1358 (2019). -
A guide to deep learning in healthcare
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S. & Dean, J.
Nat. Med. 25, 24–29 (2019). [readcube]
Learn more -
Ensuring Fairness in Machine Learning to Advance Health Equity
Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H.
Ann. Intern. Med. 169(12):866-872 (2018). -
When does size matter? -- Promises, pitfalls, and appropriate interpretations of ‘big’ data
Rough K, Thompson J.
Ophthalmology. 125(8):1136-1138 (2018). -
Resolving the Productivity Paradox of Health Information Technology: A Time for Optimism
Wachter, R. M., Howell, M. D.
JAMA 320(1):25-26 (2018).
Blog Posts [more at Med-PaLM site]
-
Introducing LangExtract: A Gemini powered information extraction library
by Akshay Goel & Atilla Kiraly
Google for Developers Blog | 30-Jul-2025 -
SensorLM: Learning the language of wearable sensors
by Yuzhe Yang & Kumar Ayush
Google Research Blog | 28-Jul-2025 -
Google France hosted a hackathon to tackle healthcare's biggest challenges
by Joelle Barral
Google Keyword Blog | 15-Jul-2025 -
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
Google Research Blog | 9-Jul-2025 -
Google Research at Google I/O 2025
by Yossi Matias
Google Keyword Blog | 22-May-2025 -
100 things we announced at I/O
by Molly McHugh-Johnson
Google Keyword Blog | 21-May-2025 -
Building with AI: highlights for developers at Google I/O
by Mat Velloso
Google Keyword Blog | 20-May-2025 -
How we're using AI to drive scientific research with greater real-world benefit
by Yossi Matias
Google Keyword Blog | 8-May-2025 -
Making complex text understandable: Minimally-lossy text simplification with Gemini
by Diego Ardila & Sujay Kakarmath
6-May-2025 -
AMIE gains vision: A research AI agent for multimodal diagnostic dialogue
by Khaled Saab & Jan Freyberg
Google Research Blog | 1-May-2025 -
Benchmarking LLMs for global health
by Mercy Asiedu
Google Research Blog | 30-Apr-2025 -
From diagnosis to treatment: Advancing AMIE for longitudinal disease management
by Valentin Liévin & Anil Palepu
Google Research Blog | 6-Mar-2025 -
Accelerating scientific breakthroughs with an AI co-scientist
by Juraj Gottweis & Vivek Natarajan
Google Research Blog | 19-Feb-2025 -
Helping everyone build AI for healthcare applications with open foundation models
by Tim Thelin & Can Kirmizibayrak
Google Research Blog | 25-Nov-2024 -
Advancing AMIE towards specialist care and real-world validation
by Alan Karthikesalingam & Vivek Natarajan
Google Research Blog | 10-Dec-2024 -
Scaling wearable foundation models
by Daniel McDuff & Xin Liu
Google Research Blog | 20-Nov-2024 -
Exploring how AI tools can help increase high-quality health content
by Garth Graham & Viknesh Sounderajah
YouTube Official Blog | 23-Oct-2024 -
Evaluating and enhancing probabilistic reasoning in language models
by Xin Liu & Daniel McDuff
Google Research Blog | 21-Oct-2024 -
How gen AI can help doctors and nurses ease their administrative workloads
by Aashima Gupta
Google Keyword Blog | 17-Oct-2024 -
Advancing personal health and wellness insights with AI
by Shwetak Patel & Shravya Shetty
Google Research Blog | 11-Jun-2024 -
Google Research at Google I/O 2024
by Yossi Matias & James Manyika
Google Research Blog | 24-May-2024 -
Advancing medical AI with Med-Gemini
by Greg Corrado & Joëlle Barral
Google Keyword Blog | 15-May-2024 -
Our progress on generative AI in health
by Yossi Matias
Google Keyword Blog | 19-Mar-2024 -
3 ways we are building equity into our health work
by Dr. Ivor Horn
Google Keyword Blog | 19-Mar-2024 -
AMIE: A research AI system for diagnostic medical reasoning and conversations
by Alan Karthikesalingam & Vivek Natarajan
Google Research Blog | 12-Jan-2024 -
3 predictions for AI in healthcare in 2024
by Aashima Gupta
Google Keyword Blog | 9-Jan-2024 -
MedLM: generative AI fine-tuned for the healthcare industry
by Yossi Matias & Aashima Gupta
Google Cloud Blog | 13-Dec-2023 -
HLTH 2023: Bringing AI to health responsibly
by Michael Howell
Google Keyword Blog | 9-Oct-2023 -
How AI can improve health for everyone, everywhere
by Karen DeSalvo
Google Keyword Blog | 3-Oct-2023 -
How 3 healthcare organizations are using generative AI
by Aashima Gupta & Greg Corrado
Google Cloud Blog | 29-Aug-2023 -
Multimodal medical AI
by Greg Corrado and Yossi Matias
Google Research Blog | 3-Aug-2023 -
Google Research at I/O 2023
by James Manyika & Jeff Dean
Google Keyword Blog | 25-May-2023 -
A responsible path to generative AI in healthcare
by Aashima Gupta & Amy Waldron
Google Cloud Blog | 13-April-2023 -
Our latest health AI research updates
by Greg Corrado & Yossi Matias
Google Keyword Blog | 14-Mar-2023 -
Google Research, 2022 & beyond: Health
by Greg Corrado & Yossi Matias
Google Research Blog | 23-Feb-2023
Publications
-
Towards physician-centered oversight of conversational diagnostic AI
Vedadi, E., Barrett, D., Harris, N., Wulczyn, E., Reddy, S., Ruparel, R., Schaekermann, M., Strother, T., Tanno, R., Sharma, Y., Lee, J., Hughes, C., Slack, D., Palepu, A., Freyberg, J., Saab, K., Liévin, V., Weng, W.-H., Tu, T., Liu, Y., Tomasev, N., Kulkarni, K., Mahdavi, S. S., Guu, K., Barral, J., Webster, D. R., Manyika, J., Hassidim, A., Chou, K., Matias, Y., Kohli, P., Rodman, A., Natarajan, V., Karthikesalingam, A. & Stutz, D.
arXiv [cs.AI] (2025). -
MedGemma Technical Report
Sellergren, A., Kazemzadeh, S., Jaroensri, T., Kiraly, A., Traverse, M., Kohlberger, T., Xu, S., Jamil, F., Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits
Zhou, Y., Khasentino, J., Yun, T., Biradar, M. I., Shreibati, J., Lai, D., Schwantes-An, T.-H., Luben, R., McCaw, Z. R., Engmann, J., Providencia, R., Schmidt, A. F., Munroe, P. B., Yang, H., Carroll, A., Khawaja, A. P., McLean, C. Y., Behsaz, B. & Hormozdiari, F.
Am. J. Hum. Genet. 0, (2025). -
SensorLM: Learning the language of wearable sensors
Zhang, Y., Ayush, K., Qiao, S., Heydari, A. A., Narayanswamy, G., Xu, M. A., Metwally, A. A., Xu, S., Garrison, J., Xu, X., Althoff, T., Liu, Y., Kohli, P., Zhan, J., Malhotra, M., Patel, S., Mascolo, C., Liu, X., McDuff, D. & Yang, Y.
arXiv [cs.LG] (2025). -
LSM-2: Learning from Incomplete Wearable Sensor Data
Xu, M. A., Narayanswamy, G., Ayush, K., Spathis, D., Liao, S., Tailor, S. A., Metwally, A., Heydari, A. A., Zhang, Y., Garrison, J., Abdel-Ghaffar, S., Xu, X., Gu, K., Sunshine, J., Poh, M.-Z., Liu, Y., Althoff, T., Narayanan, S., Kohli, P., Malhotra, M., Patel, S., Yang, Y., Rehg, J. M., Liu, X. & McDuff, D.
arXiv [cs.LG] (2025). -
Advancing conversational diagnostic AI with multimodal reasoning
Saab, K., Freyberg, J., Park, C., Strother, T., Cheng, Y., Weng, W.-H., Barrett, D. G. T., Stutz, D., Tomasev, N., Palepu, A., Liévin, V., Sharma, Y., Ruparel, R., Ahmed, A., Vedadi, E., Kanada, K., Hughes, C., Liu, Y., Brown, G., Gao, Y., Li, S., Mahdavi, S. S., Manyika, J., Chou, K., Matias, Y., Hassidim, A., Webster, D. R., Kohli, P., Eslami, S. M. A., Barral, J., Rodman, A., Natarajan, V., Schaekermann, M., Tu, T., Karthikesalingam, A. & Tanno, R.
arXiv [cs.CL] (2025). -
Generative AI for medical education: Insights from a case study with medical students and an AI tutor for clinical reasoning
Wang, A., Ruparel, R., Iurchenko, A., Jhun, P., Séguin, J. A., Strachan, P., Wong, R., Karthikesalingam, A., Matias, Y., Hassidim, A., Webster, D., Semturs, C., Krause, J. & Schaekermann, M.
Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems 1–8 (ACM, 2025). -
CoCa-CXR: Contrastive captioners learn strong temporal structures for Chest X-Ray vision-language understanding
Chen, Y., Xu, S., Sellergren, A., Matias, Y., Hassidim, A., Shetty, S., Golden, D., Yuille, A. & Yang, L.
arXiv [cs.CV] (2025). -
LLM-based text simplification and its effect on user comprehension and cognitive load
Guidroz, T., Ardila, D., Li, J., Mansour, A., Jhun, P., Gonzalez, N., Ji, X., Sanchez, M., Kakarmath, S., Bellaiche, M. M. J., Garrido, M. Á., Ahmed, F., Choudhary, D., Hartford, J., Xu, C., Echeverria, H. J. S., Wang, Y., Shaffer, J., Eric, Cao, Matias, Y., Hassidim, A., Webster, D. R., Liu, Y., Fujiwara, S., Bui, P. & Duong, Q.
arXiv [cs.CL] (2025). -
Towards conversational diagnostic artificial intelligence
Tu, T., Schaekermann, M., Palepu, A., Saab, K., Freyberg, J., Tanno, R., Wang, A., Li, B., Amin, M., Cheng, Y., Vedadi, E., Tomasev, N., Azizi, S., Singhal, K., Hou, L., Webson, A., Kulkarni, K., Mahdavi, S. S., Semturs, C., Gottweis, J., Barral, J., Chou, K., Corrado, G. S., Matias, Y., Karthikesalingam, A. & Natarajan, V.
Nature 1–9 (2025). -
Towards accurate differential diagnosis with large language models
McDuff, D., Schaekermann, M., Tu, T., Palepu, A., Wang, A., Garrison, J., Singhal, K., Sharma, Y., Azizi, S., Kulkarni, K., Hou, L., Cheng, Y., Liu, Y., Sara Mahdavi, S., Prakash, S., Pathak, A., Semturs, C., Patel, S., Webster, D. R., Dominowska, E., Gottweis, J., Barral, J., Chou, K., Corrado, G. S., Matias, Y., Sunshine, J., Karthikesalingam, A. & Natarajan, V.
Nature (2025). -
TxGemma: Efficient and Agentic LLMs for Therapeutics
Wang, E., Schmidgall, S., Jaeger, P. F., Zhang, F., Pilgrim, R., Matias, Y., Barral, J., Fleet, D. & Azizi, S.
arXiv [cs.AI] (2025). -
A scalable framework for evaluating health language models
Mallinar, N., Heydari, A. A., Liu, X., Faranesh, A. Z., Winslow, B., Hammerquist, N., Graef, B., Speed, C., Malhotra, M., Patel, S., Prieto, J. L., McDuff, D. & Metwally, A. A.
arXiv [cs.AI] (2025). -
Towards conversational AI for disease management
Palepu, A., Liévin, V., Weng, W.-H., Saab, K., Stutz, D., Cheng, Y., Kulkarni, K., Mahdavi, S. S., Barral, J., Webster, D. R., Chou, K., Hassidim, A., Matias, Y., Manyika, J., Tanno, R., Natarajan, V., Rodman, A., Tu, T., Karthikesalingam, A. & Schaekermann, M.
arXiv [cs.CL] (2025) -
Towards an AI co-scientist
Gottweis, J., Weng, W.-H., Daryin, A., Tu, T., Palepu, A., Sirkovic, P., Myaskovsky, A., Weissenberger, F., Rong, K., Tanno, R., Saab, K., Popovici, D., Blum, J., Zhang, F., Chou, K., Hassidim, A., Gokturk, B., Vahdat, A., Kohli, P., Matias, Y., Carroll, A., Kulkarni, K., Tomasev, N., Guan, Y., Dhillon, V., Vaishnav, E. D., Lee, B., Costa, T. R. D., Penadés, J. R., Peltz, G., Xu, Y., Pawlosky, A., Karthikesalingam, A. & Natarajan, V.
arXiv [cs.AI] (2025). -
AI mirrors experimental science to uncover a novel mechanism of gene transfer crucial to bacterial evolution
Penadés, J. R., Gottweis, J., He, L., Patkowski, J. B., Shurick, A., Weng, W.-H., Tu, T., Palepu, A., Myaskovsky, A., Pawlosky, A., Natarajan, V., Karthikesalingam, A. & Costa, T. R. D.
bioRxiv 2025.02.19.639094 (2025). -
Sleepless nights, sugary days: Creating synthetic users with health conditions for realistic coaching agent interactions
Yun, T., Yang, E., Safdari, M., Lee, J. H., Kumar, V. V., Mahdavi, S. S., Amar, J., Peyton, D., Aharony, R., Michaelides, A., Schneider, L., Galatzer-Levy, I., Jia, Y., Canny, J., Gretton, A. & Matarić, M.
arXiv [cs.LG] (2025). -
PolyPath: Adapting a Large Multimodal Model for Multi-slide Pathology Report Generation
Ahmed, F., Yang, L., Jaroensri, T., Sellergren, A., Matias, Y., Hassidim, A., Corrado, G. S., Webster, D. R., Shetty, S., Prabhakara, S., Liu, Y., Golden, D., Wulczyn, E. & Steiner, D. F.
arXiv (2025). -
The multicultural medical assistant: Can LLMs improve medical ASR errors across borders?
Ayo, A., Mardhiyah, S., Emmanuel, A., Sarita, J. & Tobi, O.
arXiv [cs.CL] (2025). -
Toward expert-level medical question answering with large language models
Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Amin, M., Hou, L., Clark, K., Pfohl, S. R., Cole-Lewis, H., Neal, D., Rashid, Q. M., Schaekermann, M., Wang, A., Dash, D., Chen, J. H., Shah, N. H., Lachgar, S., Mansfield, P. A., Prakash, S., Green, B., Dominowska, E., Agüera Y Arcas, B., Tomašev, N., Liu, Y., Wong, R., Semturs, C., Mahdavi, S. S., Barral, J. K., Webster, D. R., Corrado, G. S., Matias, Y., Azizi, S., Karthikesalingam, A. & Natarajan, V.
Nat. Med. 31, 943–950 (2025). -
LearnLM: Improving Gemini for learning
LearnLM Team, Modi, A., Veerubhotla, A. S., Rysbek, A., Huber, A., Wiltshire, B., Veprek, B., Gillick, D., Kasenberg, D., Ahmed, D., Jurenka, I., Cohan, J., She, J., Wilkowski, J., Alarakyia, K., McKee, K. R., Wang, L., Kunesch, M., Schaekermann, M., Pîslar, M., Joshi, N., Mahmoudieh, P., Jhun, P., Wiltberger, S., Mohamed, S., Agarwal, S., Phal, S. M., Lee, S. J., Strinopoulos, T., Ko, W.-J., Wang, A., Anand, A., Bhoopchand, A., Wild, D., Pandya, D., Bar, F., Graham, G., Winnemoeller, H., Nagda, M., Kolhar, P., Schneider, R., Zhu, S., Chan, S., Yadlowsky, S., Sounderajah, V. & Assael, Y.
arXiv [cs.CY] (2024). -
PaliGemma 2: A family of versatile VLMs for transfer
Steiner, A., Pinto, A. S., Tschannen, M., Keysers, D., Wang, X., Bitton, Y., Gritsenko, A., Minderer, M., Sherbondy, A., Long, S., Qin, S., Ingle, R., Bugliarello, E., Kazemzadeh, S., Mesnard, T., Alabdulmohsin, I., Beyer, L. & Zhai, X.
arXiv [cs.CV] (2024). -
Plots unlock time-series understanding in multimodal models
Daswani, M., Bellaiche, M. M. J., Wilson, M., Ivanov, D., Papkov, M., Schnider, E., Tang, J., Lamerigts, K., Botea, G., Sanchez, M. A., Patel, Y., Prabhakara, S., Shetty, S. & Telang, U.
arXiv [cs.AI] (2024). -
Collaboration between clinicians and vision–language models in radiology report generation
Tanno, R., Barrett, D. G. T., Sellergren, A., Ghaisas, S., Dathathri, S., See, A., Welbl, J., Lau, C., Tu, T., Azizi, S., Singhal, K., Schaekermann, M., May, R., Lee, R., Man, S., Mahdavi, S., Ahmed, Z., Matias, Y., Barral, J., Eslami, S. M. A., Belgrave, D., Liu, Y., Kalidindi, S. R., Shetty, S., Natarajan, V., Kohli, P., Huang, P.-S., Karthikesalingam, A. & Ktena, I.
Nat. Med. 1–10 (2024). -
Exploring large language models for specialist-level oncology care
Palepu, A., Dhillon, V., Niravath, P., Weng, W.-H., Prasad, P., Saab, K., Tanno, R., Cheng, Y., Mai, H., Burns, E., Ajmal, Z., Kulkarni, K., Mansfield, P., Webster, D., Barral, J., Gottweis, J., Schaekermann, M., Mahdavi, S. S., Natarajan, V., Karthikesalingam, A. & Tu, T.
arXiv [cs.HC] (2024). -
Scaling wearable foundation models
Narayanswamy, G., Liu, X., Ayush, K., Yang, Y., Xu, X., Liao, S., Garrison, J., Tailor, S., Sunshine, J., Liu, Y., Althoff, T., Narayanan, S., Kohli, P., Zhan, J., Malhotra, M., Patel, S., Abdel-Ghaffar, S. & McDuff, D.
arXiv [cs.LG] (2024). -
Towards Democratization of Subspeciality Medical Expertise
O'Sullivan, J.W., Palepu, A., Saab, K., Weng, W.H., Cheng, Y., Chu, E., Desai, Y., Elezaby, A., Kim, D.S., Lan, R. and Tang, W., 2024.
arXiv preprint arXiv:2410.03741 (2024). -
A toolbox for surfacing health equity harms and biases in large language models
Pfohl, S. R., Cole-Lewis, H., Sayres, R., Neal, D., Asiedu, M., Dieng, A., Tomasev, N., Rashid, Q. M., Azizi, S., Rostamzadeh, N., McCoy, L. G., Celi, L. A., Liu, Y., Schaekermann, M., Walton, A., Parrish, A., Nagpal, C., Singh, P., Dewitt, A., Mansfield, P., Prakash, S., Heller, K., Karthikesalingam, A., Semturs, C., Barral, J., Corrado, G., Matias, Y., Smith-Loud, J., Horn, I. & Singhal, K.
Nat Med (2024). -
Contextual evaluation of large language models for classifying tropical and infectious diseases
Asiedu, M., Tomasev, N., Ghate, C., Tiyasirichokchai, T., Dieng, A., Akande, O., Siwo, G., Adudans, S., Aitkins, S., Ehiakhamen, O., Ndombi, E. & Heller, K.
arXiv [cs.CL] (2024). -
PathAlign: A vision-language model for whole slide images in histopathology
Ahmed, F., Sellergren, A., Yang, L., Xu, S., Babenko, B., Ward, A., Olson, N., Mohtashamian, A., Matias, Y., Corrado, G. S., Duong, Q., Webster, D. R., Shetty, S., Golden, D., Liu, Y., Steiner, D. F. & Wulczyn, E.
arXiv [cs.CV] (2024). -
Towards a Personal Health Large Language Model
Cosentino, J., Belyaeva, A., Liu, X., Furlotte, N. A., Yang, Z., Lee, C., Schenck, E., Patel, Y., Cui, J., Schneider, L. D., Bryant, R., Gomes, R. G., Jiang, A., Lee, R., Liu, Y., Perez, J., Rogers, J. K., Speed, C., Tailor, S., Walker, M., Yu, J., Althoff, T., Heneghan, C., Hernandez, J., Malhotra, M., Stern, L., Matias, Y., Corrado, G. S., Patel, S., Shetty, S., Zhan, J., Prabhakara, S., McDuff, D. & McLean, C. Y.
arXiv [cs.AI] (2024). -
Transforming Wearable Data into Health Insights using Large Language Model Agents
Merrill, M. A., Paruchuri, A., Rezaei, N., Kovacs, G., Perez, J., Liu, Y., Schenck, E., Hammerquist, N., Sunshine, J., Tailor, S., Ayush, K., Su, H.-W., He, Q., McLean, C. Y., Malhotra, M., Patel, S., Zhan, J., Althoff, T., McDuff, D. & Liu, X.
arXiv [cs.AI] (2024). -
Tx-LLM: A Large Language Model for Therapeutics
Chaves, J. M. Z., Wang, E., Tu, T., Vaishnav, E. D., Lee, B., Sara Mahdavi, S., Semturs, C., Fleet, D., Natarajan, V. & Azizi, S.
arXiv [cs.CL] (2024). -
Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
Li, B., Wang, A., Strachan, P., Séguin, J. A., Lachgar, S., Schroeder, K. C., Fleck, M. S., Wong, R., Karthikesalingam, A., Natarajan, V., Matias, Y., Corrado, G. S., Webster, D., Liu, Y., Hammel, N., Sayres, R., Semturs, C. & Schaekermann, M.
in Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems 1–10 (Association for Computing Machinery, 2024). -
Advancing Multimodal Medical Capabilities of Gemini
Yang, L., Xu, S., Sellergren, A., Kohlberger, T., Zhou, Y., Ktena, I., Kiraly, A., Ahmed, F., Hormozdiari, F., Jaroensri, T., Wang, E., Wulczyn, E., Jamil, F., Guidroz, T., Lau, C., Qiao, S., Liu, Y., Goel, A., Park, K., Agharwal, A., George, N., Wang, Y., Tanno, R., Barrett, D. G. T., Weng, W.-H., Sara Mahdavi, S., Saab, K., Tu, T., Kalidindi, S. R., Etemadi, M., Cuadros, J., Sorensen, G., Matias, Y., Chou, K., Corrado, G., Barral, J., Shetty, S., Fleet, D., Ali Eslami, S. M., Tse, D., Prabhakara, S., McLean, C., Steiner, D., Pilgrim, R., Kelly, C., Azizi, S. & Golden, D.
arXiv [cs.CV] (2024). -
Capabilities of Gemini Models in Medicine
Saab, K., Tu, T., Weng, W.-H., Tanno, R., Stutz, D., Wulczyn, E., Zhang, F., Strother, T., Park, C., Vedadi, E., Chaves, J. Z., Hu, S.-Y., Schaekermann, M., Kamath, A., Cheng, Y., Barrett, D. G. T., Cheung, C., Mustafa, B., Palepu, A., McDuff, D., Hou, L., Golany, T., Liu, L., Alayrac, J.-B., Houlsby, N., Tomasev, N., Freyberg, J., Lau, C., Kemp, J., Lai, J., Azizi, S., Kanada, K., Man, S., Kulkarni, K., Sun, R., Shakeri, S., He, L., Caine, B., Webson, A., Latysheva, N., Johnson, M., Mansfield, P., Lu, J., Rivlin, E., Anderson, J., Green, B., Wong, R., Krause, J., Shlens, J., Dominowska, E., Ali Eslami, S. M., Cui, C., Vinyals, O., Kavukcuoglu, K., Manyika, J., Dean, J., Hassabis, D., Matias, Y., Webster, D., Barral, J., Corrado, G., Semturs, C., Sara Mahdavi, S., Gottweis, J., Karthikesalingam, A. & Natarajan, V.
arXiv [cs.AI] (2024). -
Towards Generalist Biomedical AI
Tu, T., Azizi, S., Driess, D., Schaekermann, M., Amin, M., Chang, P.-C., Carroll, A., Lau, C., Tanno, R., Ktena, I., Mustafa, B., Chowdhery, A., Liu, Y., Kornblith, S., Fleet, D., Mansfield, P., Prakash, S., Wong, R., Virmani, S., Semturs, C., Sara Mahdavi, S., Green, B., Dominowska, E., Aguera y Arcas, B., Barral, J., Webster, D., Corrado, G. S., Matias, Y., Singhal, K., Florence, P., Karthikesalingam, A. & Natarajan, V.
NEJM AI (2024). -
The sound of healthcare: Improving medical transcription ASR accuracy with Large Language Models
Adedeji, A., Joshi, S. & Doohan, B.
arXiv [cs.CL] (2024). -
LLMs Accelerate Annotation for Medical Information Extraction
Goel, A., Gueta, A., Gilon, O., Liu, C., Erell, S., Nguyen, L. H., Hao, X., Jaber, B., Reddy, S., Kartha, R., Steiner, J., Laish, I. & Feder, A.
arXiv [cs.CL] (2023). -
The Capability of Large Language Models to Measure Psychiatric Functioning
Galatzer-Levy, I. R., McDuff, D., Natarajan, V., Karthikesalingam, A. & Malgaroli, M.
arXiv [cs.CL] (2023). -
ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders
Xu, S., Yang, L., Kelly, C., Sieniek, M., Kohlberger, T., Ma, M., Weng, W.-H., Kiraly, A., Kazemzadeh, S., Melamed, Z., Park, J., Strachan, P., Liu, Y., Lau, C., Singh, P., Chen, C., Etemadi, M., Kalidindi, S. R., Matias, Y., Chou, K., Corrado, G. S., Shetty, S., Tse, D., Prabhakara, S., Golden, D., Pilgrim, R., Eswaran, K. & Sellergren, A.
arXiv [cs.CV] (2023). -
Multimodal LLMs for health grounded in individual-specific data
Belyaeva, A., Cosentino, J., Hormozdiari, F., Eswaran, K., Shetty, S., Corrado, G., Carroll, A., McLean, C. Y. & Furlotte, N. A.
arXiv [q-bio.QM] (2023). -
Large Language Models are Few-Shot Health Learners
Liu, X., McDuff, D., Kovacs, G., Galatzer-Levy, I., Sunshine, J., Zhan, J., Poh, M.-Z., Liao, S., Di Achille, P. & Patel, S.
arXiv [cs.CL] (2023). -
Large Language Models Encode Clinical Knowledge
Singhal, K., Azizi, S., Tu, T., Sara Mahdavi, S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Scharli, N., Chowdhery, A., Mansfield, P., Aguera y Arcas, B., Webster, D., Corrado, G. S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N., Liu, Y., Rajkomar, A., Barral, J., Semturs, C., Karthikesalingam, A. & Natarajan, V.
Nature (2023).
Blog Posts
-
Helping everyone build AI for healthcare applications with open foundation models
by Tim Thelin & Can Kirmizibayrak
Google Research Blog | 25-Nov-2024 -
Developing reliable AI tools for healthcare
by Krishnamurthy (Dj) Dvijotham & Taylan Cemgil
Google DeepMind Blog | 17-Jul-2023 -
Robust and efficient medical imaging with self-supervision
by Shekoofeh Azizi & Laura Culp
Google Research Blog | 26-Apr-2023 -
How Underspecification Presents Challenges for Machine Learning
by Alex D’Amour & Katherine Heller
Google Research Blog | 18-Oct-2021 -
Self-Supervised Learning Advances Medical Image Classification
by Shekoofeh Azizi
Google Research Blog | 13-Oct-2021
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., R amé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
Health AI Developer Foundations
Kiraly, A. P., Baur, S., Philbrick, K., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., George, N., Jamil, F., Tang, J., Bailey, K., Ahmed, F., Goel, A., Ward, A., Yang, L., Sellergren, A., Matias, Y., Hassidim, A., Shetty, S., Golden, D., Azizi, S., Steiner, D. F., Liu, Y., Thelin, T., Pilgrim, R. & Kirmizibayrak, C.
arXiv [cs.LG] (2024). -
Generative models improve fairness of medical classifiers under distribution shifts
Ktena, I., Wiles, O., Albuquerque, I., Rebuffi, S.-A., Tanno, R., Roy, A. G., Azizi, S., Belgrave, D., Kohli, P., Cemgil, T., Karthikesalingam, A. & Gowal, S.
Nat. Med. (2024). -
Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
Martindale, A. P. L., Ng, B., Ngai, V., Kale, A. U., Ferrante di Ruffano, L., Golub, R. M., Collins, G. S., Moher, D., McCradden, M. D., Oakden-Rayner, L., Rivera, S. C., Calvert, M., Kelly, C. J., Lee, C. S., Yau, C., Chan, A.-W., Keane, P. A., Beam, A. L., Denniston, A. K. & Liu, X.
Nat. Commun. 15, 1619 (2024). -
Detecting shortcut learning for fair medical AI using shortcut testing
Brown, A., Tomasev, N., Freyberg, J., Liu, Y., Karthikesalingam, A. & Schrouff, J.
Nat. Commun. 14, 4314 (2023). -
Enhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to clinicians
Dvijotham, K., Winkens, J., Barsbey, M., Ghaisas, S., Stanforth, R., Pawlowski, N., Strachan, P., Ahmed, Z., Azizi, S., Bachrach, Y., Culp, L., Daswani, M., Freyberg, J., Kelly, C., Kiraly, A., Kohlberger, T., McKinney, S., Mustafa, B., Natarajan, V., Geras, K., Witowski, J., Qin, Z. Z., Creswell, J., Shetty, S., Sieniek, M., Spitz, T., Corrado, G., Kohli, P., Cemgil, T. & Karthikesalingam, A.
Nat. Med. 1–7 (2023). -
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Azizi, S., Culp, L., Freyberg, J., Mustafa, B., Baur, S., Kornblith, S., Chen, T., Tomasev, N., Mitrović, J., Strachan, P., Mahdavi, S. S., Wulczyn, E., Babenko, B., Walker, M., Loh, A., Chen, P.-H. C., Liu, Y., Bavishi, P., McKinney, S. M., Winkens, J., Roy, A. G., Beaver, Z., Ryan, F., Krogue, J., Etemadi, M., Telang, U., Liu, Y., Peng, L., Corrado, G. S., Webster, D. R., Fleet, D., Hinton, G., Houlsby, N., Karthikesalingam, A., Norouzi, M. & Natarajan, V.
Nature Biomedical Engineering 1–24 (2023). [readcube]
Learn more -
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
Schrouff, J., Harris, N., Koyejo, O. O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A., Heller, K. A., Chiappa, S. & D’Amour, A.
NeurIPS (2022). -
Comparing human and AI performance in medical machine learning: An open-source Python library for the statistical analysis of reader study data
McKinney, S. M.
medRxiv (2022). -
Iterative Quality Control Strategies for Expert Medical Image Labeling
Freeman, B., Hammel, N., Phene, S., Huang, A., Ackermann, R., Kanzheleva, O., Hutson, M., Taggart, C., Duong, Q. & Sayres, R.
HCOMP 9, 60–71 (2021). -
Big Self-Supervised Models Advance Medical Image Classification
Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 3478–3488 (2021). -
Privacy-first health research with federated learning
Sadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M., Serghiou, S., Rader, B., Ingerman, A., Mellem, S., Kairouz, P., Nsoesie, E. O., MacFarlane, J., Vullikanti, A., Marathe, M., Eastham, P., Brownstein, J. S., Arcas, B. A. Y., Howell, M. D. & Hernandez, J.
NPJ Digit Med 4, 132 (2021). -
Supervised Transfer Learning at Scale for Medical Imaging
Mustafa, B., Loh, A., Freyberg, J., MacWilliams, P., Karthikesalingam, A., Houlsby, N. & Natarajan, V.
arXiv [cs.CV] (2021). -
Big Self-Supervised Models Advance Medical Image Classification
Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
arXiv [eess.IV] (2021). -
Underspecification Presents Challenges for Credibility in Modern Machine Learning
D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X. & Sculley, D.
JMLR. arXiv [cs.LG] (2020).
Learn more -
Contrastive Training for Improved Out-of-Distribution Detection
Winkens, J., Bunel, R., Roy, A. G., Stanforth, R., Natarajan, V., Ledsam, J. R., MacWilliams, P., Kohli, P., Karthikesalingam, A., Kohl, S., Cemgil, T., Ali Eslami, S. M. & Ronneberger, O.
arXiv [cs.LG] (2020). -
Customization scenarios for de-identification of clinical notes
Hartman, T., Howell, M., Dean, J., Hoory, S., Slyper, R., Laish, I., Gilon, O, Vainstein, D., Corrado, G., Chou, K., Po, M., Williams, J., Ellis, S., Bee, G., Hassidim, A., Amira, R., Beryozkin, G., Szpektor, I., & Matias, Y.
BMC (2020).
Blog Posts
-
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
9-Jul-2025 -
Helping everyone build AI for healthcare applications with open foundation models
by Tim Thelin & Can Kirmizibayrak
Google Research | Blog | 25-Nov-2024 -
How we’re using AI to connect people to health information
Google Keyword Blog | 19-Mar-2024 -
3 ways we are building equity into our health work
by Ivor Horn
Google Keyword Blog | 19-Mar-2024 -
SCIN: A new resource for representative dermatology images
by Pooja Rao
Google Research Blog | 19-Mar-2024 -
HEAL: A framework for health equity assessment of machine learning performance
by Mike Schaekermann & Ivor Horn
Google Research Blog | 15-Mar-2024 -
Health-specific embedding tools for dermatology and pathology
by Dave Steiner & Rory Pilgrim
Google Research Blog | 8-Mar-2024 -
7 ways Google Health is improving outcomes in Asia Pacific
by Karen DeSalvo
Google Keyword Blog | 18-Jul-2023 -
8 ways Google Lens can help make your life easier
by Lou Wang
Google Keyword Blog | 14-Jun-2023 -
Ask a Techspert: What does AI do when it doesn’t know?
by Iz Conroy
Google Keyword Blog | 08-Feb-2022 -
Does Your Medical Image Classifier Know What It Doesn’t Know?
by Abhijit Guha Roy & Jie Ren
Google Research Blog | 27-Jan-2022 -
How DermAssist uses TensorFlow.js for on-device image quality checks
by Miles Hutson & Aaron Loh
TensorFlow Blog | 11-Oct-2021 -
Using AI to help find answers to common skin conditions
by Peggy Bui & Yuan Liu
Google Keyword Blog | 18-May-2021 -
AI assists doctors in interpreting skin conditions
by Ayush Jain & Peggy Bui
Google Keyword Blog | 28-Apr-2021 -
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Models
by Timo Kohlberger & Yuan Liu
Google Research Blog | 19-Feb-2020 -
Using Deep Learning to Inform Differential Diagnoses of Skin Diseases
by Yuan Liu & Peggy Bui
Google Research Blog | 12-Sep-2019
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
Evaluating medical AI systems in dermatology under uncertain ground truth
Stutz, D., Cemgil, A. T., Roy, A. G., Matejovicova, T., Barsbey, M., Strachan, P., Schaekermann, M., Freyberg, J., Rikhye, R., Freeman, B., Matos, J. P., Telang, U., Webster, D. R., Liu, Y., Corrado, G. S., Matias, Y., Kohli, P., Liu, Y., Doucet, A. & Karthikesalingam, A.
Med. Image Analysis. 103, 103556 (2025). -
Closing the AI generalisation gap by adjusting for dermatology condition distribution differences across clinical settings
Rikhye, R. V., Loh, A., Hong, G. E., Singh, P., Smith, M. A., Muralidharan, V., Wong, D., Sayres, R., Jain, A., Phung, M., Betancourt, N., Fong, B., Sahasrabudhe, R., Nasim, K., Eschholz, A., Mustafa, B., Freyberg, J., Spitz, T., Matias, Y., Corrado, G. S., Chou, K., Webster, D. R., Bui, P., Liu, Y., Liu, Y., Ko, J. & Lin, S.
EBioMedicine 116, 105766 (2025). -
Navigating skin concerns with AI: A human-centered investigation of a dermatology app in a diverse community
Sayres, R., Devon-Sand, A., Schaekermann, M., Smith, M. A., Strachan, P., Hong, G., Nguyen, T., Wong, D., Hammel, N., Siegel, D., Ren, K., Belletieri, C., Muralidharan, V., Rikhye, R., Liu, Y., Freeman, B., González, M., Ashcraft, N., Cho, H., Li, J., Oak, S., Shum, M., Ward, A., Matias, Y., Corrado, G. S., Webster, D., Bui, P., Singh, P., Liu, Y., Ko, J. & Lin, S.
Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems 1–16 (ACM, 2025) -
Creating an empirical dermatology dataset through crowdsourcing with web search advertisements
Ward, A., Li, J., Wang, J., Lakshminarasimhan, S., Carrick, A., Campana, B., Hartford, J., Sreenivasaiah, P. K., Tiyasirisokchai, T., Virmani, S., Wong, R., Matias, Y., Corrado, G. S., Webster, D. R., Smith, M. A., Siegel, D., Lin, S., Ko, J., Karthikesalingam, A., Semturs, C. & Rao, P.
JAMA Netw. Open 7, e2446615 (2024). -
Searching for dermatology information online using images vs text: A randomized study
Krogue, J. D., Sayres, R., Hartford, J., Talreja, A., Bavishi, P., Salaets, N., Raiford, K., Nayar, J., Patel, R., Matias, Y., Corrado, G. S., Berrada, D., Kharbanda, H., Wang, L., Webster, D. R., Duong, Q., Bui, P. & Liu, Y.
medRxiv (2024). -
Health equity assessment of machine learning performance (HEAL): a framework and dermatology AI model case study
Schaekermann, M., Spitz, T., Pyles, M., Cole-Lewis, H., Wulczyn, E., Pfohl, S. R., Martin, D., Jr, Jaroensri, R., Keeling, G., Liu, Y., Farquhar, S., Xue, Q., Lester, J., Hughes, C., Strachan, P., Tan, F., Bui, P., Mermel, C. H., Peng, L. H., Matias, Y., Corrado, G. S., Webster, D. R., Virmani, S., Semturs, C., Liu, Y., Horn, I. & Cameron Chen, P.-H.
eClinicalMedicine (2024). -
Differences Between Patient and Clinician-Taken Images: Implications for Virtual Care of Skin Conditions
Rikhye, R. V., Hong, G. E., Singh, P., Smith, M. A., Loh, A., Muralidharan, V., Wong, D., Sayres, R., Phung, M., Betancourt, N., Fong, B., Sahasrabudhe, R., Nasim, K., Eschholz, A., Matias, Y., Corrado, G. S., Chou, K., Webster, D. R., Bui, P., Liu, Y., Liu, Y., Ko, J. & Lin, S.
Mayo Clinic Proceedings: Digital Health (2024). -
Conformal prediction under ambiguous ground truth
Stutz, D., Roy, A. G., Matejovicova, T., Strachan, P., Cemgil, A. T. & Doucet, A.
Transactions on Machine Learning Research (2023). -
A Reduction to Binary Approach for Debiasing Multiclass Datasets. Advances in Neural Information Processing Systems
Alabdulmohsin, I.M., Schrouff, J., Koyejo, S.
35. NeurIPS (2022). -
Federated Training of Dual Encoding Models on Small Non-IID Client Datasets
Vemulapalli, R., Morningstar, W. R., Mansfield, P. A., Eichner, H., Singhal, K., Afkanpour, A. & Green, B.
arXiv [cs.LG] (2022). -
Machine learning for clinical operations improvement via case triaging
Huang, S. J., Liu, Y., Kanada, K., Corrado, G. S., Webster, D. R., Peng, L., Bui, P. & Liu, Y.
Skin Health and Disease (2021). -
Does your dermatology classifier know what it doesn’t know? Detecting the long-tail of unseen conditions
Guha Roy, A., Ren, J., Azizi, S., Loh, A., Natarajan, V., Mustafa, B., Pawlowski, N., Freyberg, J., Liu, Y., Beaver, Z., Vo, N., Bui, P., Winter, S., MacWilliams, P., Corrado, G. S., Telang, U., Liu, Y., Cemgil, T., Karthikesalingam, A., Lakshminarayanan, B. & Winkens, J.
Med. Image Analysis. 75, 102274 (2021). [reading link]
Learn more -
Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology Practices
Jain, A., Way, D., Gupta, V., Gao, Y., de Oliveira Marinho, G., Hartford, J., Sayres, R., Kanada, K., Eng, C., Nagpal, K., DeSalvo, K. B., Corrado, G. S., Peng, L., Webster, D. R., Carter Dunn, R., Coz, D., Huang, S. J., Liu, Y., Bui, P. & Liu, Y.
JAMA Netw Open 4, e217249–e217249 (2021). -
Addressing the Real-world Class Imbalance Problem in Dermatology
Weng, W.-H., Deaton, J., Natarajan, V., Elsayed, G. F. & Liu, Y.
Machine Learning for Health NeurIPS Workshop (ML4H), PMLR 136:415-429 (2020). -
Agreement Between Saliency Maps and Human-Labeled Regions of Interest: Applications to Skin Disease Classification
Singh, N., Lee, K., Coz, D., Angermueller, C., Huang, S., Loh, A. & Liu, Y.
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 3172–3181 (2020). -
A deep learning system for differential diagnosis of skin diseases
Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., Kanada, K., de Oliveira Marinho, G., Gallegos, J., Gabriele, S., Gupta, V., Singh, N., Natarajan, V., Hofmann-Wellenhof, R., Corrado, G. S., Peng, L. H., Webster, D. R., Ai, D., Huang, S., Liu, Y., Carter Dunn, R. & Coz, D.
Nat. Med. (2020). [readcube]
Learn more -
DermGAN: Synthetic Generation of Clinical Skin Images with Pathology
Ghorbani, A., Natarajan, V., Coz, D. & Liu, Y.
Machine Learning for Health NeurIPS Workshop (ML4H), PMLR 116:155-170 (2020). -
Measuring clinician-machine agreement in differential diagnoses for dermatology
Eng, C., Liu, Y. & Bhatnagar, R.
Br. J. Dermatol. (2019). [readcube]
Learn more
Blog Posts
-
Improved Detection of Elusive Polyps via Machine Learning
by Yossi Matias & Ehud Rivlin
Google Research Blog | 5-Aug-2021 -
Verily Opens New R&D Center in Israel Focused on the Application of AI in Healthcare
by Robin Suchan
Verily Press | 5-Aug-2021 -
Using Machine Learning to Detect Deficient Coverage in Colonoscopy Screenings
by Daniel Freedman & Ehud Rivlin
Google Research Blog | 28-Aug-2020
Publications
-
Artificial intelligence for phase recognition in complex laparoscopic cholecystectomy
Golany, T., Aides, A., Freedman, D., Rabani, N., Liu, Y., Rivlin, E., Corrado, G. S., Matias, Y., Khoury, W., Kashtan, H. & Reissman, P.
Surg. Endosc. (2022). -
Detection of elusive polyps via a large-scale artificial intelligence system (with videos)
Livovsky, D. M., Veikherman, D., Golany, T., Aides, A., Dashinsky, V., Rabani, N., Ben Shimol, D., Blau, Y., Katzir, L., Shimshoni, I., Liu, Y., Segol, O., Goldin, E., Corrado, G., Lachter, J., Matias, Y., Rivlin, E. & Freedman, D.
Gastrointest. Endosc. (2021). -
Detecting Deficient Coverage in Colonoscopies
Freedman, D., Blau, Y., Katzir, L., Aides, A., Shimshoni, I., Veikherman, D., Golany, T., Gordon, A., Corrado, G., Matias, Y. & Rivlin, E.
IEEE Trans. Med. Imaging 1–1 (2020).
Blog Posts
-
An ML-Based Framework for COVID-19 Epidemiology
by Joel Shor & Sercan Arik
Google Research Blog | 13-Oct-2021 -
Google Cloud, Harvard Global Health Institute release improved COVID-19 Public Forecasts, share lessons learned
by Tomas Pfister
Google Cloud Blog | 15-Nov-2020 -
Google Cloud AI and Harvard Global Health Institute Collaborate on new COVID-19 forecasting model
by Dario Sava
Google Cloud Blog | 3-Aug-2020
Publications
-
Algorithmic fairness in pandemic forecasting: lessons from COVID-19
Tsai, T. C., Arik, S., Jacobson, B. H., Yoon, J., Yoder, N., Sava, D., Mitchell, M., Graham, G. & Pfister, T.
NPJ Digit Med 5, 59 (2022). -
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
Cramer, E. Y., Ray, E. L., Lopez, V. K., Bracher, J., Brennen, A., Castro Rivadeneira, A. J., Gerding, A., Gneiting, T., House, K. H., Huang, Y., Jayawardena, D., Kanji, A. H., Khandelwal, A., Le, K., Mühlemann, A., Niemi, J., Shah, A., Stark, A., Wang, Y., Wattanachit, N., Zorn, M. W., Gu, Y., Jain, S., Bannur, N., Deva, A., Kulkarni, M., Merugu, S., Raval, A., Shingi, S., Tiwari, A., White, J., Abernethy, N. F., Woody, S., Dahan, M., Fox, S., Gaither, K., Lachmann, M., Meyers, L. A., Scott, J. G., Tec, M., Srivastava, A., George, G. E., Cegan, J. C., Dettwiller, I. D., England, W. P., Farthing, M. W., Hunter, R. H., Lafferty, B., Linkov, I., Mayo, M. L., Parno, M. D., Rowland, M. A., Trump, B. D., Zhang-James, Y., Chen, S., Faraone, S. V., Hess, J., Morley, C. P., Salekin, A., Wang, D., Corsetti, S. M., Baer, T. M., Eisenberg, M. C., Falb, K., Huang, Y., Martin, E. T., McCauley, E., Myers, R. L., Schwarz, T., Sheldon, D., Gibson, G. C., Yu, R., Gao, L., Ma, Y., Wu, D., Yan, X., Jin, X., Wang, Y.-X., Chen, Y., Guo, L., Zhao, Y., Gu, Q., Chen, J., Wang, L., Xu, P., Zhang, W., Zou, D., Biegel, H., Lega, J., McConnell, S., Nagraj, V. P., Guertin, S. L., Hulme-Lowe, C., Turner, S. D., Shi, Y., Ban, X., Walraven, R., Hong, Q.-J., Kong, S., van de Walle, A., Turtle, J. A., Ben-Nun, M., Riley, S., Riley, P., Koyluoglu, U., DesRoches, D., Forli, P., Hamory, B., Kyriakides, C., Leis, H., Milliken, J., Moloney, M., Morgan, J., Nirgudkar, N., Ozcan, G., Piwonka, N., Ravi, M., Schrader, C., Shakhnovich, E., Siegel, D., Spatz, R., Stiefeling, C., Wilkinson, B., Wong, A., Cavany, S., España, G., Moore, S., Oidtman, R., Perkins, A., Kraus, D., Kraus, A., Gao, Z., Bian, J., Cao, W., Lavista Ferres, J., Li, C., Liu, T.-Y., Xie, X., Zhang, S., Zheng, S., Vespignani, A., Chinazzi, M., Davis, J. T., Mu, K., Pastore Y Piontti, A., Xiong, X., Zheng, A., Baek, J., Farias, V., Georgescu, A., Levi, R., Sinha, D., Wilde, J., Perakis, G., Bennouna, M. A., Nze-Ndong, D., Singhvi, D., Spantidakis, I., Thayaparan, L., Tsiourvas, A., Sarker, A., Jadbabaie, A., Shah, D., Della Penna, N., Celi, L. A., Sundar, S., Wolfinger, R., Osthus, D., Castro, L., Fairchild, G., Michaud, I., Karlen, D., Kinsey, M., Mullany, L. C., Rainwater-Lovett, K., Shin, L., Tallaksen, K., Wilson, S., Lee, E. C., Dent, J., Grantz, K. H., Hill, A. L., Kaminsky, J., Kaminsky, K., Keegan, L. T., Lauer, S. A., Lemaitre, J. C., Lessler, J., Meredith, H. R., Perez-Saez, J., Shah, S., Smith, C. P., Truelove, S. A., Wills, J., Marshall, M., Gardner, L., Nixon, K., Burant, J. C., Wang, L., Gao, L., Gu, Z., Kim, M., Li, X., Wang, G., Wang, Y., Yu, S., Reiner, R. C., Barber, R., Gakidou, E., Hay, S. I., Lim, S., Murray, C., Pigott, D., Gurung, H. L., Baccam, P., Stage, S. A., Suchoski, B. T., Prakash, B. A., Adhikari, B., Cui, J., Rodríguez, A., Tabassum, A., Xie, J., Keskinocak, P., Asplund, J., Baxter, A., Oruc, B. E., Serban, N., Arik, S. O., Dusenberry, M., Epshteyn, A., Kanal, E., Le, L. T., Li, C.-L., Pfister, T., Sava, D., Sinha, R., Tsai, T., Yoder, N., Yoon, J., Zhang, L., Abbott, S., Bosse, N. I., Funk, S., Hellewell, J., Meakin, S. R., Sherratt, K., Zhou, M., Kalantari, R., Yamana, T. K., Pei, S., Shaman, J., Li, M. L., Bertsimas, D., Skali Lami, O., Soni, S., Tazi Bouardi, H., Ayer, T., Adee, M., Chhatwal, J., Dalgic, O. O., Ladd, M. A., Linas, B. P., Mueller, P., Xiao, J., Wang, Y., Wang, Q., Xie, S., Zeng, D., Green, A., Bien, J., Brooks, L., Hu, A. J., Jahja, M., McDonald, D., Narasimhan, B., Politsch, C., Rajanala, S., Rumack, A., Simon, N., Tibshirani, R. J., Tibshirani, R., Ventura, V., Wasserman, L., O’Dea, E. B., Drake, J. M., Pagano, R., Tran, Q. T., Ho, L. S. T., Huynh, H., Walker, J. W., Slayton, R. B., Johansson, M. A., Biggerstaff, M. & Reich, N. G.
Proc. Natl. Acad. Sci. U. S. A. 119, e2113561119 (2022). -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
Arık, S. Ö., Shor, J., Sinha, R., Yoon, J., Ledsam, J. R., Le, L. T., Dusenberry, M. W., Yoder, N. C., Popendorf, K., Epshteyn, A., Euphrosine, J., Kanal, E., Jones, I., Li, C.-L., Luan, B., Mckenna, J., Menon, V., Singh, S., Sun, M., Ravi, A. S., Zhang, L., Sava, D., Cunningham, K., Kayama, H., Tsai, T., Yoneoka, D., Nomura, S., Miyata, H. & Pfister, T.
NPJ Digit Med 4, 146 (2021). -
Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks
Kapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M. & O’Banion, S.
arXiv [cs.LG] (2020). -
Interpretable Sequence Learning for Covid-19 Forecasting
Arik, Li, Yoon, Sinha, Epshteyn, Le, Menon, Singh, Zhang, Nikoltchev, Sonthalia, Nakhost, Kanal & Pfister.
Adv. Neural Inf. Process. Syst. 2020.
Blog Posts
-
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
9-Jul-2025. -
Google and Perceptra partner for 1 million AI screenings for diabetic retinopathy in underserved communities
by Jackie Wang
Google Thailand Blog | 10-Feb-2025 -
How AI is making eyesight-saving care more accessible in resource-constrained settings
by Rajroshan Sawhney
Google Keyword Blog | 17-Oct-2024 -
Supporting a healthier and greener India with our AI
by the Google India Team
Google India Blog | 17-Oct-2024 -
Google at 25: By the numbers
by Michelle Budzyna & Molly McHugh-Johnson
Google Keyword Blog | 27-Sep-2023 -
7 ways Google Health is improving outcomes in Asia Pacific
by Karen DeSalvo
Google Keyword Blog | 18-Jul-2023 -
5 myths about medical AI, debunked
by Kasumi Widner
Google Keyword Blog | 30-May-2023 -
An eye to the future: How AI could help to improve detection of eye disease in Australian communities
by Angus Turner
Google Australia Blog | 7-Mar-2023 -
Healthcare AI systems that put people at the center
by Emma Beede
Google Keyword Blog | 25-Apr-2020 -
The Check Up: our latest health AI developments
by Greg Corrado
Google Research Blog | 24-Mar-2022 -
New milestones in helping prevent eye disease with Verily
by Kasumi Widner & Sunny Virmani
Google Keyword Blog | 25-Feb-2019 -
Launching a powerful new screening tool for diabetic eye disease in India
Verily Blog | 25-Feb-2019 -
AI for Social Good in Asia Pacific
by Kent Walter
Google Keyword Blog | 13-Dec-2018 -
Improving the Effectiveness of Diabetic Retinopathy Models
by Rory Sayres & Jonathan Krause
Google Research Blog | 13-Dec-2018 -
A major milestone for the treatment of eye disease
by Mustafa Suleyman
DeepMind Blog | 13-Aug-2018 -
Detecting diabetic eye disease with machine learning
by Lily Peng
Google Keyword Blog | 29-Nov-2016 -
Deep learning for Detection of Diabetic Eye Disease
by Lily Peng & Varun Gulshan
Google Research Blog | 29-Nov-2016
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
Performance of a deep learning diabetic retinopathy algorithm in India
Brant, A., Singh, P., Yin, X., Yang, L., Nayar, J., Jeji, D., Matias, Y., Corrado, G. S., Webster, D. R., Virmani, S., Meenu, A., Kannan, N. B., Krause, J., Thng, F., Peng, L., Liu, Y., Widner, K. & Ramasamy, K.
JAMA Netw. Open 8, e250984 (2025). -
Validation of a Deep Learning Model for Diabetic Retinopathy on Patients with Young-Onset Diabetes
Tan-Torres, A., Praveen, P. A., Jeji, D., Brant, A., Yin, X., Yang, L., Singh, P., Ali, T., Traynis, I., Jadeja, D., Sawhney, R., Webster, D. R., Hammel, N., Liu, Y., Widner, K., Virmani, S., Venkatesh, P., Krause, J. & Tandon, N.
Ophthalmol. Ther. 1–9 (2025). -
Risk Stratification for Diabetic Retinopathy Screening Order Using Deep Learning: A Multicenter Prospective Study
Bora, A., Tiwari, R., Bavishi, P., Virmani, S., Huang, R., Traynis, I., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Pattanapongpaiboon, W., Chopra, R. & Ruamviboonsuk, P.
Transl. Vis. Sci. Technol. 12, 11 (2023). -
Lessons learned from translating AI from development to deployment in healthcare
Widner, K., Virmani, S., Krause, J., Nayar, J., Tiwari, R., Pedersen, E. R., Jeji, D., Hammel, N., Matias, Y., Corrado, G. S., Liu, Y., Peng, L. & Webster, D. R.
Nat. Med. 1–3 (2023). [readcube]
Learn more -
Cost-Utility Analysis of Deep Learning and Trained Human Graders for Diabetic Retinopathy Screening in a Nationwide Program
Srisubat, A., Kittrongsiri, K., Sangroongruangsri, S., Khemvaranan, C., Shreibati, J. B., Ching, J., Hernandez, J., Tiwari, R., Hersch, F., Liu, Y., Hanutsaha, P., Ruamviboonsuk, V., Turongkaravee, S., Raman, R. & Ruamviboonsuk, P.
Ophthalmol Ther (2023). -
Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians
Chia, M. A., Hersch, F., Sayres, R., Bavishi, P., Tiwari, R., Keane, P. A. & Turner, A. W.
Br. J. Ophthalmol. (2023). -
Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study
Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., Raman, R., Levinstein, B., Liu, Y., Schaekermann, M., Lee, R., Virmani, S., Widner, K., Chambers, J., Hersch, F., Peng, L. & Webster, D. R.
The Lancet Digital Health (2022). -
Redesigning Clinical Pathways for Immediate Diabetic Retinopathy Screening Results
Pedersen Elin Rønby, Cuadros Jorge, Khan Mahbuba, Fleischmann Sybille, Wolff Gregory, Hammel Naama, Liu Yun & Leung Geoffrey.
NEJM Catalyst (2021). -
Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning
Wilson, M., Chopra, R., Wilson, M. Z., Cooper, C., MacWilliams, P., Liu, Y., Wulczyn, E., Florea, D., Hughes, C. O., Karthikesalingam, A., Khalid, H., Vermeirsch, S., Nicholson, L., Keane, P. A., Balaskas, K. & Kelly, C. J.
JAMA Ophthalmol. (2021). -
Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human Graders
Limwattanayingyong, J., Nganthavee, V., Seresirikachorn, K., Singalavanija, T., Soonthornworasiri, N., Ruamviboonsuk, V., Rao, C., Raman, R., Grzybowski, A., Schaekermann, M., Peng, L. H., Webster, D. R., Semturs, C., Krause, J., Sayres, R., Hersch, F., Tiwari, R., Liu, Y. & Ruamviboonsuk, P.
Journal of Diabetes Research, 1–8 (2020). -
Improving medical annotation quality to decrease labeling burden using stratified noisy cross-validation
Hsu J, Phene S, Mitani A, Luo J, Hammel N, Krause J, Sayres R.
in ACM-CHIL [arXiv] (2020).
Learn more -
Adherence to ophthalmology referral, treatment and follow-up after diabetic retinopathy screening in the primary care setting
Bresnick, G., Cuadros, J. A., Khan, M., Fleischmann, S., Wolff, G., Limon, A., Chang, J., Jiang, L., Cuadros, P. & Pedersen, E. R.
BMJ Open Diabetes Research and Care 8, e001154 (2020). -
A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy
Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P. & Vardoulakis, L. M.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–12. Association for Computing Machinery (2020). -
Expert Discussions Improve Comprehension of Difficult Cases in Medical Image Assessment
Schaekermann, M., Cai, C. J., Huang, A. E. & Sayres, R.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–13. Association for Computing Machinery (2020). -
Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs
Phene, S., Dunn, R. C., Hammel, N., Liu, Y., Krause, J., Kitade, N., Schaekermann, M., Sayres, R., Wu, D. J., Bora, A., Semturs, C., Misra, A., Huang, A. E., Spitze, A., Medeiros, F. A., Maa, A. Y., Gandhi, M., Corrado, G. S., Peng, L. & Webster, D. R.
Ophthalmology 126, 1627–1639 (2019). -
Remote Tool-Based Adjudication for Grading Diabetic Retinopathy
Schaekermann, M., Hammel, N., Terry, M., Ali, T. K., Liu, Y., Basham, B., Campana, B., Chen, W., Ji, X., Krause, J., Corrado, G. S., Peng, L., Webster, D. R., Law, E. & Sayres, R.
Transl. Vis. Sci. Technol. 8, 40 (2019). -
Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India
Gulshan, V., Rajan, R. P., Widner, K., Wu, D., Wubbels, P., Rhodes, T., Whitehouse, K., Coram, M., Corrado, G., Ramasamy, K., Raman, R., Peng, L. & Webster, D. R.
JAMA Ophthalmol. (2019). -
Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program
Ruamviboonsuk, P., Krause, J., Chotcomwongse, P., Sayres, R., Raman, R., Widner, K., Campana, B. J. L., Phene, S., Hemarat, K., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Rao, C., Kuruvilla, O., Jung, J., Tan, J., Orprayoon, S., Kangwanwongpaisan, C., Sukumalpaiboon, R., Luengchaichawang, C., Fuangkaew, J., Kongsap, P., Chualinpha, L., Saree, S., Kawinpanitan, S., Mitvongsa, K., Lawanasakol, S., Thepchatri, C., Wongpichedchai, L., Corrado, G. S., Peng, L. & Webster, D. R.
npj Digit Med 2, 25 (2019). -
Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy
Sayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., Krause, J., Narayanaswamy, A., Rastegar, Z., Wu, D., Xu, S., Barb, S., Joseph, A., Shumski, M., Smith, J., Sood, A. B., Corrado, G. S., Peng, L. & Webster, D. R.
Ophthalmology 126, 552–564 (2019). -
Clinically applicable deep learning for diagnosis and referral in retinal disease
Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., Hughes, C.O., Raine, R., Hughes, J., Sim, D. A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back, T., Khaw, P.T., Suleyman, M., Cornebise, J., Keane, P.A., & Ronneberger, O.
Nat. Med. 24, 1342–1350 (2018). [readcube]
Learn more -
Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy
Krause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G. S., Peng, L., & Webster, D.R.
Ophthalmology 125, 1264–1272 (2018).[arXiv]
Learn more -
Blind spots in telemedicine: a qualitative study of staff workarounds to resolve gaps in diabetes management
Bouskill, K., Smith-Morris, C., Bresnick, G., Cuadros, J. & Pedersen, E. R.
BMC Health Services Research 18, (2018). -
Diabetic Retinopathy and the Cascade into Vision Loss
Smith-Morris, C., Bresnick, G. H., Cuadros, J., Bouskill, K. E. & Pedersen, E. R.
Med. Anthropol. 39, 109–122 (2018). -
Who Said What: Modeling Individual Labelers Improves Classification
Guan, M., Gulshan, V., Dai, A, Hinton, G.
AAAI Conference on Artificial Intelligence (2018). -
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Ramasamy, K., Nelson, P., Mega, J., & Webster, D.
JAMA 316, 2402–2410 (2016).
Blog Posts [more at Google Keyword Blog]
-
4 Fitbit features I'm using to become a more efficient runner
by Molly McHugh-Jackson
Google Keyword Blog | 18-Apr-2025 -
Loss of Pulse Detection on the Google Pixel Watch 3
by Kamal Shah & Jake Sunshine
Google Research Blog | 20-Mar-2025 -
How we’re helping Singaporeans manage chronic diseases
by Amy McDonough
Google Keyword Blog | 15-Nov-2024 -
What does electrodermal sensing reveal? Insights from the Pixel Watch & Fitbit Sense 2
by Daniel McDuff & Seamus Thomson
Google Research Blog | 24-Oct-2024 -
Evaluating and enhancing probabilistic reasoning in language models
by Xin Liu & Daniel McDuff
Google Research Blog | 21-Oct-2024 -
How we built 3 key fitness metrics for Pixel Watch 3
by Molly McHugh-Johnson
Google Keyword Blog | 11-Sep-2024 -
Loss of Pulse Detection: A first-of-its-kind feature on Pixel Watch 3
by Tajinder Gadh & Pramod Rudrapatna
Google Keyword Blog | 13-Aug-2024 -
A new study using Fitbit data uncovers connections between sleep and disease
by Logan Schneider & Evan Brittain
Google Keyword Blog | 24-Jul-2024 -
Health partners can now more easily access Fitbit heart data
by Kapil Parakh
Google Keyword Blog | 10-Jul-2024 -
How Fitbit can help you measure stress — and use it to your advantage
by Molly McHugh-Johnson
Google Keyword Blog | 17-Apr-2024 -
How we’re using AI to connect people to health information
by Karen DeSalvo
Google Keyword Blog | 19-Mar-2024 -
3 heart-health tips from Fitbit’s lead cardiologist
by Molly McHugh-Johnson
Google Keyword Blog | 6-Mar-2024 -
6 things I learned after using the Fitbit Charge 6 for a week
by Mike Darling
Google Keyword Blog | 24-Jan-2024 -
New Fitbit study explores metabolic health
by Javier L. Prieto
Google Keyword Blog | 17-Jan-2024 -
3 ways Fitbit can improve your health — backed by research
by Amy McDonough
Google Keyword Blog | 26-Oct-2023 -
How Google Pixel Watch 2 and Fitbit Charge 6 improved heart rate tracking
by Molly McHugh-Johnson
19-Oct-2023 -
Google Pixel Watch 2: New ways to stay healthy, connected and safe
by Sandeep Waraich
Google Keyword Blog | 4-Oct-2023 -
Introducing Fitbit Charge 6: Our most advanced tracker yet
by TJ Varghese
Google Keyword Blog | 28-Sep-2023 -
Meet the new Fitbit app that’s redesigned with you in mind
by Maggie Stanphill & Bhanu Narasimhan
Google Keyword Blog | 1-Aug-2023 -
How we trained Fitbit’s Body Response feature to detect stress
by Elena Perez & Samy Abdel-Ghaffer
Google Keyword Blog | 2-Jun-2023 -
7 ways to stress less with Fitbit
by Elena Perez
Google Keyword Blog | 4-May-2023 -
3 ways Google products can help you feel less stressed
by Megan Jones Bell
Google Keyword Blog | 13-Apr-2023 -
6 ways Google AI is helping you sleep better
by Molly McHugh-Johnson
Google Keyword Blog | 16-Mar-2023 -
3 ways to take better care of your mind and body in 2023
by Megan Jones Bell
Google Keyword Blog | 5-Jan-2023 -
8 things we launched in 2022 to support your health
by Iz Conroy
Google Keyword Blog | 21-Dec-2022 -
I tried Fitbit’s new sleep features for two months
by Zahra Barnes
Google Keyword Blog | 20-Dec-2022 -
Google Pixel Watch: Help by Google, health by Fitbit
by Sandeep Waraich
Google Keyword Blog | 6-Oct-2022 -
8 things to try now on Fitbit Sense 2 and Versa 4
by TJ Varghese
Google Keyword Blog | 29-Sep-2022 -
Our work toward health equity
by Ivor Horn
Google Keyword Blog | 12-Sep-2022 -
Fitbit’s fall lineup: helping you live your healthiest life
by TJ Varghese
Google Keyword Blog | 24-Aug-2022 -
Kick-start your fitness routine with Fitbit Inspire 3
by The Fitbit Team
Google Keyword Blog | 24-Aug-2022 -
Manage your health and fitness with Fitbit Versa 4 and Sense 2
by The Fitbit Team
Google Keyword Blog | 24-Aug-2022 -
Improve your ZZZs with Fitbit Premium Sleep Profile
by The Fitbit Team
Google Keyword Blog | 22-Jun-2022 -
Mental health resources you can count on
by Megan Jones Bell
Google Keyword Blog | 17-May-2022 -
New Fitbit feature makes AFib detection more accessible
by The Fitbit Team
Google Keyword Blog | 11-Apr-2022 -
The Check Up: helping people live healthier lives
by Karen DeSalvo
Google Keyword Blog | 24-Mar-2022
Publications
-
Insights into maternal sleep: a large-scale longitudinal analysis of real-world wearable device data before, during, and after pregnancy
Young-Lin, N., Heneghan, C., Liu, Y., Schneider, L., Niehaus, L., Haney, A., Asiedu, M., Gleichauf, K., Shreibati, J. B. & Lafon, B.
EBioMedicine 114, 105640 (2025). -
Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program
Zheng, N. S., Annis, J., Master, H., Han, L., Gleichauf, K., Ching, J. H., Nasser, M., Coleman, P., Desine, S., Ruderfer, D. M., Hernandez, J., Schneider, L. D. & Brittain, E. L.
Nat. Med. (2024). -
Measure by measure: Resting heart rate across the 24-hour cycle
Speed, C., Arneil, T., Harle, R., Wilson, A., Karthikesalingam, A., McConnell, M. & Phillips, J.
PLOS Digit Health 2, e0000236 (2023). -
Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study
Lubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S. J., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos, A. & Foulkes, A. S.
Circulation (2022). -
Occurrence of Relative Bradycardia and Relative Tachycardia in Individuals Diagnosed With COVID-19
Natarajan, A., Su, H.-W. & Heneghan, C.
Front. Physiol. 13, 898251 (2022). -
Measurement of respiratory rate using wearable devices and applications to COVID-19 detection
Natarajan, A., Su, H.-W., Heneghan, C., Blunt, L., O’Connor, C. & Niehaus, L.
NPJ Digit Med 4, 136 (2021).
Blog Posts [more at DeepVariant Blog]
-
Unlocking rich genetic insights through multimodal AI with M-REGLE
by Yuchen Zhou & Farhad Hormozdiari
Google Research Blog | 23-Jun-2025 -
A new genome sequencing tool powered with our technology
by Andrew Carroll
Google Keyword Blog | 26-Oct-2022 -
Improving the Accuracy of Genomic Analysis with DeepVariant 1.0
by Andrew Carroll & Pi-Chuan Chang
Google Research Blog | 18-Sep-2020 -
DeepVariant: Highly Accurate Genomes With Deep Neural Networks
by Mark DePristo & Ryan Poplin
Google Research Blog | 4-Dec-2017 -
An AI Resident at work: Suhani Vora and her work on genomics
by Phing Lee
Google Keyword Blog | 17-Nov-2017
Publications
-
Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits
Zhou, Y., Khasentino, J., Yun, T., Biradar, M. I., Shreibati, J., Lai, D., Schwantes-An, T.-H., Luben, R., McCaw, Z. R., Engmann, J., Providencia, R., Schmidt, A. F., Munroe, P. B., Yang, H., Carroll, A., Khawaja, A. P., McLean, C. Y., Behsaz, B. & Hormozdiari, F.
Am. J. Hum. Genet. 0, (2025). -
Personalized pangenome references
Sirén, J., Eskandar, P., Ungaro, M. T., Hickey, G., Eizenga, J. M., Novak, A. M., Chang, X., Chang, P.-C., Kolmogorov, M., Carroll, A., Monlong, J. & Paten, B.
Nat. Methods 1–7 (2024). -
Local read haplotagging enables accurate long-read small variant calling
Kolesnikov, A., Cook, D., Nattestad, M. et al.
Nat Commun 15, 5907 (2024). -
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
Yun, T., Cosentino, J., Behsaz, B., McCaw, Z. R., Hill, D., Luben, R., Lai, D., Bates, J., Yang, H., Schwantes-An, T.-H., Zhou, Y., Khawaja, A. P., Carroll, A., Hobbs, B. D., Cho, M. H., McLean, C. Y. & Hormozdiari, F.
Nat. Genet. (2024). -
The complete sequence and comparative analysis of ape sex chromosomes
Makova, K. D., Pickett, B. D., Harris, R. S., Hartley, G. A., Cechova, M., Pal, K., Nurk, S., Yoo, D., Li, Q., Hebbar, P., McGrath, B. C., Antonacci, F., Aubel, M., Biddanda, A., Borchers, M., Bornberg-Bauer, E., Bouffard, G. G., Brooks, S. Y., Carbone, L., Carrel, L., Carroll, A., Chang, P.-C., Chin, C.-S., Cook, D. E., Craig, S. J. C., de Gennaro, L., Diekhans, M., Dutra, A., Garcia, G. H., Grady, P. G. S., Green, R. E., Haddad, D., Hallast, P., Harvey, W. T., Hickey, G., Hillis, D. A., Hoyt, S. J., Jeong, H., Kamali, K., Pond, S. L. K., LaPolice, T. M., Lee, C., Lewis, A. P., Loh, Y.-H. E., Masterson, P., McGarvey, K. M., McCoy, R. C., Medvedev, P., Miga, K. H., Munson, K. M., Pak, E., Paten, B., Pinto, B. J., Potapova, T., Rhie, A., Rocha, J. L., Ryabov, F., Ryder, O. A., Sacco, S., Shafin, K., Shepelev, V. A., Slon, V., Solar, S. J., Storer, J. M., Sudmant, P. H., Sweetalana, Sweeten, A., Tassia, M. G., Thibaud-Nissen, F., Ventura, M., Wilson, M. A., Young, A. C., Zeng, H., Zhang, X., Szpiech, Z. A., Huber, C. D., Gerton, J. L., Yi, S. V., Schatz, M. C., Alexandrov, I. A., Koren, S., O’Neill, R. J., Eichler, E. E. & Phillippy, A. M.
Nature 630, 401–411 (2024). -
Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation
Kolmogorov, M., Billingsley, K. J., Mastoras, M., Meredith, M., Monlong, J., Lorig-Roach, R., Asri, M., Alvarez Jerez, P., Malik, L., Dewan, R., Reed, X., Genner, R. M., Daida, K., Behera, S., Shafin, K., Pesout, T., Prabakaran, J., Carnevali, P., Yang, J., Rhie, A., Scholz, S. W., Traynor, B. J., Miga, K. H., Jain, M., Timp, W., Phillippy, A. M., Chaisson, M., Sedlazeck, F. J., Blauwendraat, C. & Paten, B.
Nat. Methods 20, 1483–1492 (2023). -
The complete sequence of a human Y chromosome
Rhie, A., Nurk, S., Cechova, M., Hoyt, S. J., Taylor, D. J., Altemose, N., Hook, P. W., Koren, S., Rautiainen, M., Alexandrov, I. A., Allen, J., Asri, M., Bzikadze, A. V., Chen, N.-C., Chin, C.-S., Diekhans, M., Flicek, P., Formenti, G., Fungtammasan, A., Garcia Giron, C., Garrison, E., Gershman, A., Gerton, J. L., Grady, P. G. S., Guarracino, A., Haggerty, L., Halabian, R., Hansen, N. F., Harris, R., Hartley, G. A., Harvey, W. T., Haukness, M., Heinz, J., Hourlier, T., Hubley, R. M., Hunt, S. E., Hwang, S., Jain, M., Kesharwani, R. K., Lewis, A. P., Li, H., Logsdon, G. A., Lucas, J. K., Makalowski, W., Markovic, C., Martin, F. J., Mc Cartney, A. M., McCoy, R. C., McDaniel, J., McNulty, B. M., Medvedev, P., Mikheenko, A., Munson, K. M., Murphy, T. D., Olsen, H. E., Olson, N. D., Paulin, L. F., Porubsky, D., Potapova, T., Ryabov, F., Salzberg, S. L., Sauria, M. E. G., Sedlazeck, F. J., Shafin, K., Shepelev, V. A., Shumate, A., Storer, J. M., Surapaneni, L., Taravella Oill, A. M., Thibaud-Nissen, F., Timp, W., Tomaszkiewicz, M., Vollger, M. R., Walenz, B. P., Watwood, A. C., Weissensteiner, M. H., Wenger, A. M., Wilson, M. A., Zarate, S., Zhu, Y., Zook, J. M., Eichler, E. E., O’Neill, R. J., Schatz, M. C., Miga, K. H., Makova, K. D. & Phillippy, A. M.
Nature (2023). -
A draft human pangenome reference
Liao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J. K., Monlong, J., Abel, H. J., Buonaiuto, S., Chang, X. H., Cheng, H., Chu, J., Colonna, V., Eizenga, J. M., Feng, X., Fischer, C., Fulton, R. S., Garg, S., Groza, C., Guarracino, A., Harvey, W. T., Heumos, S., Howe, K., Jain, M., Lu, T.-Y., Markello, C., Martin, F. J., Mitchell, M. W., Munson, K. M., Mwaniki, M. N., Novak, A. M., Olsen, H. E., Pesout, T., Porubsky, D., Prins, P., Sibbesen, J. A., Sirén, J., Tomlinson, C., Villani, F., Vollger, M. R., Antonacci-Fulton, L. L., Baid, G., Baker, C. A., Belyaeva, A., Billis, K., Carroll, A., Chang, P.-C., Cody, S., Cook, D. E., Cook-Deegan, R. M., Cornejo, O. E., Diekhans, M., Ebert, P., Fairley, S., Fedrigo, O., Felsenfeld, A. L., Formenti, G., Frankish, A., Gao, Y., Garrison, N. A., Giron, C. G., Green, R. E., Haggerty, L., Hoekzema, K., Hourlier, T., Ji, H. P., Kenny, E. E., Koenig, B. A., Kolesnikov, A., Korbel, J. O., Kordosky, J., Koren, S., Lee, H., Lewis, A. P., Magalhães, H., Marco-Sola, S., Marijon, P., McCartney, A., McDaniel, J., Mountcastle, J., Nattestad, M., Nurk, S., Olson, N. D., Popejoy, A. B., Puiu, D., Rautiainen, M., Regier, A. A., Rhie, A., Sacco, S., Sanders, A. D., Schneider, V. A., Schultz, B. I., Shafin, K., Smith, M. W., Sofia, H. J., Abou Tayoun, A. N., Thibaud-Nissen, F., Tricomi, F. F., Wagner, J., Walenz, B., Wood, J. M. D., Zimin, A. V., Bourque, G., Chaisson, M. J. P., Flicek, P., Phillippy, A. M., Zook, J. M., Eichler, E. E., Haussler, D., Wang, T., Jarvis, E. D., Miga, K. H., Garrison, E., Marschall, T., Hall, I. M., Li, H. & Paten, B.
Nature 617, 312–324 (2023). -
Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models
Cosentino, J., Behsaz, B., Alipanahi, B., McCaw, Z. R., Hill, D., Schwantes-An, T.-H., Lai, D., Carroll, A., Hobbs, B. D., Cho, M. H., McLean, C. Y. & Hormozdiari, F.
Nat. Genet. (2023). -
Best: A Tool for Characterizing Sequencing Errors
Liu, D., Belyaeva, A., Shafin, K., Chang, P.-C., Carroll, A. & Cook, D. E.
bioRxiv (2022). -
Knowledge distillation for fast and accurate DNA sequence correction
Belyaeva, A., Shor, J., Cook, D. E., Shafin, K., Liu, D., Töpfer, A., Wenger, A. M., Rowell, W. J., Yang, H., Kolesnikov, A., McLean, C. Y., Nattestad, M., Carroll, A. & Chang, P.-C.
NeurIPS (2022). -
An Empirical Study of ML-based Phenotyping and Denoising for Improved Genomic Discovery
Yuan, B., McLean, C. Y., Hormozdiari, F. I. & Cosentino, J.
NeurIPS (2022). -
DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer
Baid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Belyaeva, A., Töpfer, A., Wenger, A. M., Rowell, W. J., Yang, H., Kolesnikov, A., Ammar, W., Vert, J.-P., Vaswani, A., McLean, C. Y., Nattestad, M., Chang, P.-C. & Carroll, A.
Nat. Biotechnol. (2022). -
Benchmarking challenging small variants with linked and long reads
Wagner, J., Olson, N. D., Harris, L., Khan, Z., Farek, J., Mahmoud, M., Stankovic, A., Kovacevic, V., Yoo, B., Miller, N., Rosenfeld, J. A., Ni, B., Zarate, S., Kirsche, M., Aganezov, S., Schatz, M. C., Narzisi, G., Byrska-Bishop, M., Clarke, W., Evani, U. S., Markello, C., Shafin, K., Zhou, X., Sidow, A., Bansal, V., Ebert, P., Marschall, T., Lansdorp, P., Hanlon, V., Mattsson, C.-A., Barrio, A. M., Fiddes, I. T., Xiao, C., Fungtammasan, A., Chin, C.-S., Wenger, A. M., Rowell, W. J., Sedlazeck, F. J., Carroll, A., Salit, M. & Zook, J. M.
Cell Genom 2, (2022). -
A complete pedigree-based graph workflow for rare candidate variant analysis
Markello, C., Huang, C., Rodriguez, A., Carroll, A., Chang, P.-C., Eizenga, J., Markello, T., Haussler, D. & Paten, B.
Genome Res. 32, 893–903 (2022). -
Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing
Goenka, S. D., Gorzynski, J. E., Shafin, K., Fisk, D. G., Pesout, T., Jensen, T. D., Monlong, J., Chang, P.-C., Baid, G., Bernstein, J. A., Christle, J. W., Dalton, K. P., Garalde, D. R., Grove, M. E., Guillory, J., Kolesnikov, A., Nattestad, M., Ruzhnikov, M. R. Z., Samadi, M., Sethia, A., Spiteri, E., Wright, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
Nat. Biotechnol. (2022). -
Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting
Gorzynski, J. E., Goenka, S. D., Shafin, K., Jensen, T. D., Fisk, D. G., Grove, M. E., Spiteri, E., Pesout, T., Monlong, J., Baid, G., Bernstein, J. A., Ceresnak, S., Chang, P.-C., Christle, J. W., Chubb, H., Dalton, K. P., Dunn, K., Garalde, D. R., Guillory, J., Knowles, J. W., Kolesnikov, A., Ma, M., Moscarello, T., Nattestad, M., Perez, M., Ruzhnikov, M. R. Z., Samadi, M., Setia, A., Wright, C., Wusthoff, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
N. Engl. J. Med. (2022). -
Ultra-Rapid Nanopore Whole Genome Genetic Diagnosis of Dilated Cardiomyopathy in an Adolescent With Cardiogenic Shock
Gorzynski, J. E., Goenka, S. D., Shafin, K., Jensen, T. D., Fisk, D. G., Grove, M. E., Spiteri, E., Pesout, T., Monlong, J., Bernstein, J. A., Ceresnak, S., Chang, P.-C., Christle, J. W., Chubb, H., Dunn, K., Garalde, D. R., Guillory, J., Ruzhnikov, M. R. Z., Wright, C., Wusthoff, C. J., Xiong, K., Hollander, S. A., Berry, G. J., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
Circ Genom Precis Med 15, e003591 (2022). -
Pangenomics enables genotyping of known structural variants in 5202 diverse genomes
Sirén, J., Monlong, J., Chang, X., Novak, A. M., Eizenga, J. M., Markello, C., Sibbesen, J. A., Hickey, G., Chang, P.-C., Carroll, A., Gupta, N., Gabriel, S., Blackwell, T. W., Ratan, A., Taylor, K. D., Rich, S. S., Rotter, J. I., Haussler, D., Garrison, E. & Paten, B.
Science 374 (2021). -
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
McCaw, Z. R., Colthurst, T., Yun, T., Furlotte, N. A., Carroll, A., Alipanahi, B., McLean, C. Y. & Hormozdiari, F.
Nat. Commun. 13, 241 (2022). -
A population-specific reference panel for improved genotype imputation in African Americans
O’Connell, J., Yun, T., Moreno, M., Li, H., Litterman, N., Kolesnikov, A., Noblin, E., Chang, P.-C.,Shastri, A., Dorfman, E. H., Shringarpure, S., Auton, A., Carroll, A. & McLean, C. Y.
Communications Biology 4, 1–9 (2021). -
Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads
Shafin, K., Pesout, T., Chang, P.-C., Nattestad, M., Kolesnikov, A., Goel, S., Baid, G., Kolmogorov, M., Eizenga, J. M., Miga, K. H., Carnevali, P., Jain, M., Carroll, A. & Paten, B.
Nat. Methods 18, 1322–1332 (2021). [readcube]
Learn more -
DeepConsensus: Gap-Aware Sequence Transformers for Sequence Correction
Baid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Wenger, A. M., Rowell, W. J., Nattestad, M., Yang, H., Kolesnikov, A., Töpfer, A., Ammar, W., Vert, J.-P., Vaswani, A., McLean, C. Y., Chang, P.-C. & Carroll, A.
bioRxiv 2021.08.31.458403 (2021). -
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology
Alipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Foster, P. J., Peng, L. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
Am. J. Hum. Genet. (2021). -
Accurate, scalable cohort variant calls using DeepVariant and GLnexus
Yun, T., Li, H., Chang, P-C., Lin, M., Carroll, A., & McLean, C. Y.
Bioinformatics 36, 5582-5589 (2021). -
SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression
Yadlowsky, S., Yun, T., McLean, C. & D’Amour, A.
arXiv [stat.ML] (2021). -
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology
Alipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
arXiv [q-bio.GN] (2020). -
GenomeWarp: an alignment-based variant coordinate transformation
McLean, C. Y., Hwang, Y., Poplin, R. & DePristo, M. A.
Bioinformatics 35, 4389–4391 (2019). -
Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome
Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, M., Mahmoud, M., Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C., Myers, G., DePristo, M. A., Ruan, J., Marschall, T., Sedlazeck, F. J., Zook, J. M., Li, H., Koren, S., Carroll, A., Rank, D. R. & Hunkapiller, M. W.
Nat. Biotechnol. 37, 1155–1162 (2019). [readcube]
Learn more -
A universal SNP and small-indel variant caller using deep neural networks
Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y. & DePristo, M. A.
Nat. Biotechnol. 36, 983–987 (2018). [readcube]
Learn more -
Deep learning of genomic variation and regulatory network data
Telenti, A., Lippert, C., Chang, P.-C. & DePristo, M.
Hum. Mol. Genet. 27, R63–R71 (2018). -
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
Kelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., McLean, C. Y. & Snoek, J.
Genome Res. 28, 739–750 (2018).
Blog Posts
-
SensorLM: Learning the language of wearable sensors
by Yuzhe Yang & Kumar Ayush
Google Research Blog | 28-Jul-2025 -
Measuring heart rate with consumer ultra-wideband radar
by Ela Gruzewska & Pooja Rao
Google Research Blog 17-Jul-2025 -
Unlocking rich genetic insights through multimodal AI with M-REGLE
by Yuchen Zhou & Farhad Hormozdiari
Google Research Blog | 23-Jun-2025 -
Loss of Pulse Detection has received U.S. FDA clearance, and is now available on Pixel Watch 3
by Edward Shi
Google Keyword Blog | 26-Feb-2025 -
Unlocking the power of time-series data with multimodal models
by Mathias Bellaiche & Marc Wilson
Google Research Blog | 25-Nov-2024 -
Scaling wearable foundation models
by Daniel McDuff & Xin Liu
Google Research Blog | 20-Nov-2024 -
What does electrodermal sensing reveal? Insights from the Pixel Watch & Fitbit Sense 2
by Daniel McDuff & Seamus Thomson
Google Research Blog | 24-Oct-2024 -
Evaluating and enhancing probabilistic reasoning in language models
by Xin Liu & Daniel McDuff
Google Research Blog | 21-Oct-2024 -
Predicting fetal well-being from cardiotocography signals using AI
by Mercy Asiedu & Nichole Young-Lin
Google Research Blog | 27-Sep-2024 -
How we built and tested body temperature on Pixel 8 Pro
by Molly McHugh-Johnson
Google Keyword Blog | 25-Jan-2024 -
New Pixel features for a minty fresh start to the year
by Stephanie Scott
Google Keyword Blog | 25-Jan-2024 -
Audioplethysmography for cardiac monitoring with hearable devices
by Xiaoran "Van" Fan & Trausti Thormundsson
Google Research Blog | 27-Oct-2023 -
SimPer: Simple self-supervised learning of periodic targets
by Daniel McDuff & Yuzhe Yang
Google Research Blog | 18-July-2023 -
Expanding research on digital wellbeing
by Nicholas Allen
Google Keyword Blog | 23-May-2022 -
The Check Up: our latest health AI developments
by Greg Corrado
Google Research Blog | 24-Mar-2022 -
Enhanced Sleep Sensing in Nest Hub
by Michael Dixon & Reena Singhal Lee
Google Research Blog | 9-Nov-2021 -
Accelerating Eye Movement Research for Wellness and Accessibility
by Nachiappan Valliappan, & Kai Kohlhoff
Google Research Blog | 10-May-2021 -
Need a better night’s sleep? Meet the new Nest Hub
by Ashton Udall
Google Keyword Blog | 16-Mar-2021 -
Contactless Sleep Sensing in Nest Hub
by Michael Dixon & Reena Singhal Lee
Google Research Blog | 16-Mar-2021 -
Take a pulse on health and wellness with your phone
by Shwetak Patel
Google Keyword Blog | 4-Feb-2021 -
Advancing health research with Google Health Studies
by Jon Morgan & Paul Eastham
Google Keyword Blog | 9-Dec-2020
Publications
-
Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits
Zhou, Y., Khasentino, J., Yun, T., Biradar, M. I., Shreibati, J., Lai, D., Schwantes-An, T.-H., Luben, R., McCaw, Z. R., Engmann, J., Providencia, R., Schmidt, A. F., Munroe, P. B., Yang, H., Carroll, A., Khawaja, A. P., McLean, C. Y., Behsaz, B. & Hormozdiari, F.
Am. J. Hum. Genet. 0, (2025). -
SensorLM: Learning the language of wearable sensors
Zhang, Y., Ayush, K., Qiao, S., Heydari, A. A., Narayanswamy, G., Xu, M. A., Metwally, A. A., Xu, S., Garrison, J., Xu, X., Althoff, T., Liu, Y., Kohli, P., Zhan, J., Malhotra, M., Patel, S., Mascolo, C., Liu, X., McDuff, D. & Yang, Y.
arXiv [cs.LG] (2025). -
LSM-2: Learning from Incomplete Wearable Sensor Data
Xu, M. A., Narayanswamy, G., Ayush, K., Spathis, D., Liao, S., Tailor, S. A., Metwally, A., Heydari, A. A., Zhang, Y., Garrison, J., Abdel-Ghaffar, S., Xu, X., Gu, K., Sunshine, J., Poh, M.-Z., Liu, Y., Althoff, T., Narayanan, S., Kohli, P., Malhotra, M., Patel, S., Yang, Y., Rehg, J. M., Liu, X. & McDuff, D.
arXiv [cs.LG] (2025). -
Development and evaluation of deep learning models for cardiotocography interpretation
Chiou, N., Young-Lin, N., Kelly, C., Cattiau, J., Tiyasirichokchai, T., Diack, A., Koyejo, S., Heller, K. & Asiedu, M.
NPJ Womens Health 3, 1–9 (2025). -
Automated loss of pulse detection on a consumer smartwatch
Shah, K., Wang, A., Chen, Y., Munjal, J., Chhabra, S., Stange, A., Wei, E., Phan, T., Giest, T., Hawkins, B., Puppala, D., Silver, E., Cai, L., Rajagopalan, S., Shi, E., Lee, Y.-L., Wimmer, M., Rudrapatna, P., Rea, T., Yuen, S., Pathak, A., Patel, S., Malhotra, M., Stogaitis, M., Phan, J., Patel, B., Vasquez, A., Fox, C., Connell, A., Taylor, J., Shreibati, J., Miller, D., McDuff, D., Kohli, P., Gadh, T. & Sunshine, J.
Nature 1–3 (2025). -
Scaling wearable foundation models
Narayanswamy, G., Liu, X., Ayush, K., Yang, Y., Xu, X., Liao, S., Garrison, J., Tailor, S., Sunshine, J., Liu, Y., Althoff, T., Narayanan, S., Kohli, P., Zhan, J., Malhotra, M., Patel, S., Abdel-Ghaffar, S. & McDuff, D.
arXiv [cs.LG] (2024). -
Smartphone-based gaze estimation for in-home autism research
Kim, N. Y., He, J., Wu, Q., Dai, N., Kohlhoff, K., Turner, J., Paul, L. K., Kennedy, D. P., Adolphs, R. & Navalpakkam, V.
Autism Res. 17, 1140–1148 (2024). -
Soli-enabled noncontact heart rate detection for sleep and meditation tracking
Xu, L., Lien, J., Li, H., Gillian, N., Nongpiur, R., Li, J., Zhang, Q., Cui, J., Jorgensen, D., Bernstein, A., Bedal, L., Hayashi, E., Yamanaka, J., Lee, A., Wang, J., Shin, D., Poupyrev, I., Thormundsson, T., Pathak, A. & Patel, S.
Sci. Rep. 13, 18008 (2023). -
Audioplethysmography for Cardiac Monitoring in Hearables
Fan, X., Pearl, D., Howard, R., Shangguan, L. & Thormundsson, T. APG.
Proceedings of the 29th Annual International Conference on Mobile Computing and Networking 1–15. Association for Computing Machinery (2023). -
SimPer: Simple Self-Supervised Learning of Periodic Targets
Yang, Y., Liu, X., Wu, J., Borac, S., Katabi, D., Poh, M.-Z. & McDuff, D.
arXiv [cs.LG] (ICLR 2023). -
Prospective validation of smartphone-based heart rate and respiratory rate measurement algorithms
Bae, S., Borac, S., Emre, Y., Wang, J., Wu, J., Kashyap, M., Kang, S.-H., Chen, L., Moran, M., Cannon, J., Teasley, E. S., Chai, A., Liu, Y., Wadhwa, N., Krainin, M., Rubinstein, M., Maciel, A., McConnell, M. V., Patel, S., Corrado, G. S., Taylor, J. A., Zhan, J. & Po, M. J.
Commun Med 2, 40 (2022). -
LuckyChirp: Opportunistic Respiration Sensing Using Cascaded Sonar on Commodity Devices
Xue, Q. S., Shin, D., Pathak, A., Garrison, J., Hsu, J., Malhotra, M. & Patel, S.
in 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom) 164–171 (IEEE, 2022). -
Sleep-wake Detection With a Contactless, Bedside Radar Sleep Sensing System
Dixon, M., Schneider, L. D., Yu, J., Hsu, J., Pathak, A., Shin, D., Lee, R. S., Malhotra, M., Mixter, K., McConnell, M. V., Taylor, J. A., Patel, S. N.,
Google Whitepaper (2021). -
Digital biomarker of mental fatigue
Tseng, V. W.-S., Valliappan, N., Ramachandran, V., Choudhury, T. & Navalpakkam, V.
NPJ Digit. Med. 4, 47 (2021). -
Accelerating eye movement research via accurate and affordable smartphone eye tracking
Valliappan, N., Dai, N., Steinberg, E., He, J., Rogers, K., Ramachandran, V., Xu, P., Shojaeizadeh, M., Guo, L., Kohlhoff, K. & Navalpakkam, V.
Nat. Commun. 11, 4553 (2020).
Blog Posts
-
This AI model is helping researchers detect disease based on coughs
by Shravya Shetty
Google Research Blog | 19-Aug-2024 -
Joint Speech Recognition and Speaker Diarization via Sequence Transduction
by Laurent El Shafey and Izhak Shafran
Google Research Blog | 16-Aug-2019 -
How AI can improve products for people with impaired speech
by Julie Cattiau
Google Keyword Blog | 7-May-2019 -
Understanding Medical Conversations
by Katherine Chou & Chung-Cheng Chiu
Google Research Blog | 21-Nov-2017
Publications
-
HeAR -- Health Acoustic Representations
Baur, S., Nabulsi, Z., Weng, W.-H., Garrison, J., Blankemeier, L., Fishman, S., Chen, C., Kakarmath, S., Maimbolwa, M., Sanjase, N., Shuma, B., Matias, Y., Corrado, G. S., Patel, S., Shetty, S., Prabhakara, S., Muyoyeta, M. & Ardila, D.
arXiv [cs.LG] (2024). -
Optimizing Audio Augmentations for Contrastive Learning of Health-Related Acoustic Signals
Blankemeier, L., Baur, S., Weng, W.-H., Garrison, J., Matias, Y., Prabhakara, S., Ardila, D. & Nabulsi, Z.
arXiv [cs.LG] (2023). -
Medical Scribe: Corpus Development and Model Performance Analyses
Shafran, I., Du, N., Tran, L., Perry, A., Keyes, L., Knichel, M., Domin, A., Huang, L., Chen, Y., Li, G., Wang, M., El Shafey, L., Soltau, H. & Paul, J. S.
Proceedings of the Language Resources and Evaluation Conference. arXiv [cs.CL] (2020). -
Extracting Symptoms and their Status from Clinical Conversations
Du, N., Chen, K., Kannan, A., Tran, L., Chen, Y. & Shafran, I.
Proceedings of the Annual Meeting of the Association of Computational Linguistics. arXiv [cs.LG] (2019). -
Automatically Charting Symptoms From Patient-Physician Conversations Using Machine Learning
Rajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., & Dean, J.
JAMA Intern. Med. 179, 836–838 (2019). -
Joint Speech Recognition and Speaker Diarization via Sequence Transduction
El Shafey, L., Soltau, H. & Shafran, I.
Proceedings of Interspeech. arXiv [cs.CL] (2019). -
Learning to Infer Entities, Properties and their Relations from Clinical Conversations
Du, N., Wang, M., Tran, L., Li, G. & Shafran, I.
Proc. Empirical Methods in Natural Language Processing. arXiv [cs.CL] (2019). -
Speech recognition for medical conversations
Chiu, C.-C., Tripathi, A., Chou, K., Co, C., Jaitly, N., Jaunzeikare, D., Kannan, A., Nguyen, P., Sak, H., Sankar, A., Tansuwan, J., Wan, N., Wu, Y., & Zhang X.
arXiv [cs.CL] (2017).
Blog Posts
-
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
9-Jul-2025 -
Deciphering clinical abbreviations with privacy protecting ML
by Alvin Rajkoma and Eric Loreaux
Google Research Blog | 24-Jan-2023 -
EHR-Safe: Generating High-Fidelity and Privacy-Preserving Synthetic Electronic Health Records
by Jinsung Yoon and Sercan O. Arik
Google Research Blog | 21-Dec-2022 -
Multi-task Prediction of Organ Dysfunction in ICUs
by Subhrajit Roy & Diana Mincu
Google Research Blog | 22-Jul-2021 -
A Step Towards Protecting Patients from Medication Errors
by Kathryn Rough & Alvin Rajkomar
Google Research Blog | 2-Apr-2020 -
Expanding the Application of Deep Learning to Electronic Health Records
by Alvin Rajkomar & Eyal Oren
Google Research Blog | 22-Jan-2019 -
Scaling Streams with Google
by Demis Hassabis & Mustafa Suleyman & Dominic King
DeepMind Blog | 13-Nov-2018 -
Deep Learning for Electronic Health Records
by Alvin Rajkomar & Eyal Oren
Google Research Blog | 8-May-2018 -
Making Healthcare Data Work Better with Machine Learning
by Patrik Sundberg & Eyal Oren
Google Research Blog | 2-Mar-2018
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
User-centred design for machine learning in health care: a case study from care management
Seneviratne, M. G., Li, R. C., Schreier, M., Lopez-Martinez, D., Patel, B. S., Yakubovich, A., Kemp, J. B., Loreaux, E., Gamble, P., El-Khoury, K., Vardoulakis, L., Wong, D., Desai, J., Chen, J. H., Morse, K. E., Downing, N. L., Finger, L. T., Chen, M.-J. & Shah, N.
BMJ Health Care Inform 29, (2022). -
Boosting the interpretability of clinical risk scores with intervention predictions
Loreaux, E., Yu, K., Kemp, J., Seneviratne, M., Chen, C., Roy, S., Protsyuk, I., Harris, N., D’Amour, A., Yadlowsky, S. & Chen, M.-J.
arXiv [cs.LG] (2022). -
Deciphering clinical abbreviations with a privacy protecting machine learning system
Rajkomar, A., Loreaux, E., Liu, Y., Kemp, J., Li, B., Chen, M.-J., Zhang, Y., Mohiuddin, A. & Gottweis, J.
Nat. Commun. 13, 7456 (2022). -
Structured understanding of assessment and plans in clinical documentation
Stupp, D., Barequet, R., Lee, I.-C., Oren, E., Feder, A., Benjamini, A., Hassidim, A., Matias, Y., Ofek, E. & Rajkomar, A.
bioRxiv (2022). -
Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routing
Roy, S., Mincu, D., Loreaux, E., Mottram, A., Protsyuk, I., Harris, N., Xue, Y., Schrouff, J., Montgomery, H., Connell, A., Tomasev, N., Karthikesalingam, A. & Seneviratne, M.
J. Am. Med. Inform. Assoc. (2021). -
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records
Tomašev, N., Harris, N., Baur, S., Mottram, A., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Magliulo, V., Meyer, C., Ravuri, S., Protsyuk, I., Connell, A., Hughes, C. O., Karthikesalingam, A., Cornebise, J., Montgomery, H., Rees, G., Laing, C., Baker, C. R., Osborne, T. F., Reeves, R., Hassabis, D., King, D., Suleyman, M., Back, T., Nielson, C., Seneviratne, M. G., Ledsam, J. R. & Mohamed, S.
Nat. Protoc. 1–23 (2021). [readcube]
Learn more -
Learning to Select Best Forecast Tasks for Clinical Outcome Prediction
Xue Y, Du N, Mottram A, Seneviratne A, Dai AM.
NeurIPS (2020). -
Deep State-Space Generative Model For Correlated Time-to-Event Predictions
Xue Y, Zhou D, Du N, Dai A, Xu Z, Zhang K, Cui C.
KDD (2020). -
Graph convolutional transformer: Learning the graphical structure of electronic health records
Choi E, Xu Z, Li Y, Dusenberry MW, Flores G, Xue Y, Dai AM.
AAAI (2020). -
Analyzing the role of model uncertainty for electronic health records
Dusenberry MW, Tran D, Choi E, Kemp J, Nixon J, Jerfel G, Heller K, & Dai AM.
ACM CHIL (2020). -
Explaining an increase in predicted risk for clinical alerts
Hardt M, Rajkomar A, Flores G, Dai A, Howell M, Corrado G, Cui C, & Hardt M.
ACM CHIL (2020). -
Predicting inpatient medication orders from electronic health record data
Rough, K., Dai, A. M., Zhang, K., Xue, Y., Vardoulakis, L. M., Cui, C., Butte, A. J., Howell, M. D. & Rajkomar, A.
Clin. Pharmacol. Ther. 108, 145–154 (2020). -
Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions
Connell, A., Montgomery, H., Martin, P., Nightingale, C., Sadeghi-Alavijeh, O., King, D., Karthikesalingam, A., Hughes, C., Back, T., Ayoub, K., Suleyman, M., Jones, G., Cross, J., Stanley, S., Emerson, M., Merrick, C., Rees, G., Laing, C. & Raine, R.
npj Digit Med 2, 67 (2019). -
Implementation of a Digitally Enabled Care Pathway (Part 1): Impact on Clinical Outcomes and Associated Health Care Costs
Connell A., Raine R., Martin P., Barbosa E.C., Morris S., Nightingale C., Sadeghi-Alavijeh O., King D., Karthikesalingam A., Hughes C., Back T., Ayoub K., Suleyman M., Jones G., Cross J., Stanley S., Emerson M., Merrick C., Rees G., Montgomery H., & Laing C.
J Med Internet Res 21(7):e13147 (2019). -
Implementation of a Digitally Enabled Care Pathway (Part 2): Qualitative Analysis of Experiences of Health Care Professionals
Connell A, Black G, Montgomery H, Martin P, Nightingale C, King D, Karthikesalingam A, Hughes C, Back T, Ayoub K, Suleyman M, Jones G, Cross J, Stanley S, Emerson M, Merrick C, Rees G, Laing C, & Raine R.
J Med Internet Res 21(7):e13143 (2019). -
Improved Patient Classification with Language Model Pretraining Over Clinical Notes
Kemp J, Rajkomar A, & Dai AM.
arXiv [cs.LG] (2019). -
Federated and Differentially Private Learning for Electronic Health Records
Pfohl SR, Dai AM, & Heller K.
arXiv [cs.LG] (2019). -
Deep Physiological State Space Model for Clinical Forecasting
Xue Y, Zhou D, Du N, Dai AM, Xu Z, Zhang K,& Cui C.
arXiv [cs.LG] (2019). -
Modelling EHR timeseries by restricting feature interaction
Zhang K, Xue Y, Flores G, Rajkomar A, Cui C, & Dai AM.
arXiv [cs.LG] (2019). -
Scalable and accurate deep learning with electronic health records
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J.
npj Digital Med 1, 18 (2018).
Blog Posts
-
A step towards making heart health screening accessible for billions with PPG signals
by Mayank Daswani & Sujay Kakarmath
Google Research Blog | 25-Jul-2024 -
Using generative AI to investigate medical imagery models and datasets
by Oran Lang & Heather Cole-Lewis
Google Research Blog | 5-Jun-2024 -
Developing an aging clock using deep learning on retinal images
by Sara Ahadi & Andrew Carroll
Google Research Blog | 11-Apr-2023 -
Detecting novel systemic biomarkers in external eye photos
by Boris Babenko & Akib Uddin
Google Research Blog | 24-Mar-2023 -
The Check Up: our latest health AI developments
by Greg Corrado
Google Research Blog | 24-Mar-2022 -
Detecting Signs of Disease from External Images of the Eye
by Boris Babenko & Naama Hammel
Google Research Blog | 24-Mar-2022 -
How AI could predict sight-threatening eye conditions
by Terry Spitz & Jim Winkens
Google Keyword Blog | 18-May-2020 -
Using AI to predict retinal disease progression
by Jason Yim, Reena Chopra, Jeffrey De Fauw & Joseph Ledsam
DeepMind Blog | 18-May-2020 -
Detecting hidden signs of anemia from the eye
by Akinori Mitani
Google Keyword Blog | 28-Jan-2020 -
Assessing Cardiovascular Risk Factors with Computer Vision
by Lily Peng
Google Research Blog | 2-Feb-2018
Publications
-
Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
Weng, W.-H., Baur, S., Daswani, M., Chen, C., Harrell, L., Kakarmath, S., Jabara, M., Behsaz, B., McLean, C. Y., Matias, Y., Corrado, G. S., Shetty, S., Prabhakara, S., Liu, Y., Danaei, G. & Ardila, D.
PLOS Global Public Health. 4(6): e0003204 (2024). -
Using generative AI to investigate medical imagery models and datasets
Lang, O., Yaya-Stupp, D., Traynis, I., Cole-Lewis, H., Bennett, C. R., Lyles, C. R., Lau, C., Irani, M., Semturs, C., Webster, D. R., Corrado, G. S., Hassidim, A., Matias, Y., Liu, Y., Hammel, N. & Babenko, B.
EBioMedicine 102, 105075 (2024). -
Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock
Ahadi, S., Wilson, K. A., Jr, Babenko, B., McLean, C. Y., Bryant, D., Pritchard, O., Kumar, A., Carrera, E. M., Lamy, R., Stewart, J. M., Varadarajan, A., Berndl, M., Kapahi, P. & Bashir, A.
Elife 12, (2023). -
A deep learning model for novel systemic biomarkers in photographs of the external eye: a retrospective study
Babenko, B., Traynis, I., Chen, C., Singh, P., Uddin, A., Cuadros, J., Daskivich, L. P., Maa, A. Y., Kim, R., Kang, E. Y.-C., Matias, Y., Corrado, G. S., Peng, L., Webster, D. R., Semturs, C., Krause, J., Varadarajan, A. V., Hammel, N. & Liu, Y.
The Lancet Digital Health (2023). -
Detection of signs of disease in external photographs of the eyes via deep learning
Babenko, B., Mitani, A., Traynis, I., Kitade, N., Singh, P., Maa, A. Y., Cuadros, J., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A., Hammel, N. & Liu, Y.
Nat Biomed Eng (2022).[readcube]
Learn more -
Deep learning to detect optical coherence tomography-derived diabetic macular edema from retinal photographs: a multicenter validation study
Liu, X., Ali, T. K., Singh, P., Shah, A., McKinney, S. M., Ruamviboonsuk, P., Turner, A. W., Keane, P. A., Chotcomwongse, P., Nganthavee, V., Chia, M., Huemer, J., Cuadros, J., Raman, R., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N., Varadarajan, A. V., Liu, Y., Chopra, R. & Bavishi, P.
Ophthalmol Retina (2022). -
Retinal fundus photographs capture hemoglobin loss after blood donation
Mitani, A., Traynis, I., Singh, P., Corrado, G. S., Webster, D. R., Peng, L. H., Varadarajan, A. V., Liu, Y. & Hammel, N. -
Predicting the risk of developing diabetic retinopathy using deep learning
Bora, A., Balasubramanian, S., Babenko, B., Virmani, S., Venugopalan, S., Mitani, A., de Oliveira Marinho, G., Cuadros, J., Ruamviboonsuk, P., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Hammel, N., Liu, Y. & Bavishi, P.
The Lancet Digital Health (2020). -
Scientific Discovery by Generating Counterfactuals Using Image Translation
Narayanaswamy, A., Venugopalan, S., Webster, D. R., Peng, L., Corrado, G. S., Ruamviboonsuk, P., Bavishi, P., Brenner, M., Nelson, P. C. & Varadarajan, A. V.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 273–283 (2020). doi:10.1007/978-3-030-59710-8_27 [arXiv]
Learn more -
Predicting conversion to wet age-related macular degeneration using deep learning
Yim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., Moraes, G., Meyer, C., Wilson, M., Dixon, J., Hughes, C., Rees, G., Khaw, P. T., Karthikesalingam, A., King, D., Hassabis, D., Suleyman, M., Back, T., Ledsam, J. R., Keane, P. A. & De Fauw, J.
Nat. Med. (2020). [readcube]
Learn more -
Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
Varadarajan, A. V., Bavishi, P., Ruamviboonsuk, P., Chotcomwongse, P., Venugopalan, S., Narayanaswamy, A., Cuadros, J., Kanai, K., Bresnick, G., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Nganthavee, V., Ledsam, J. R., Keane, P. A., Corrado, G. S., Peng, L. & Webster, D. R.
Nat. Commun. 11, 130 (2020). -
Detection of anaemia from retinal fundus images via deep learning
Mitani, A., Huang, A., Venugopalan, S., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N., Liu, Y. & Varadarajan, A. V.
Nat Biomed Eng (2019). [readcube]
Learn more -
Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning
Babenko, B., Balasubramanian, S., Blumer, K. E., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N. & Varadarajan, A. V.
arXiv [cs.CV] (2019). -
Deep Learning for Predicting Refractive Error From Retinal Fundus Images
aradarajan, A.V., Poplin, R., Blumer, K., Angermueller, C., Lesdam, J., Chopra, R., Keane, P.A., Corrado, G. S., Peng, L., Webster, D. R.
Invest. Ophthalmol. Vis. Sci. 59, 2861–2868 (2018). -
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., Peng, L., & Webster, D. R.
Nat. Biomed. Eng. 2, 158–164 (2018). [readcube]
Learn more
Blog Posts [more at OHS Blog]
-
MedGemma: Our most capable open models for health AI development
Daniel Golden & Rory Pilgrim
9-Jul-2025 -
Building with AI: highlights for developers at Google I/O
by Matt Velloso
Google Keyword Blog | 20-May-2025 -
5 ways Open Health Stack is helping developers address healthcare gaps
by Richa Tiwari
Google Keyword Blog | 18-Dec-2024 -
5 ways Google is accelerating Health AI innovation in Africa
by Yossi Mattia & Shravya Shetty
Google Keyword Blog | 31-Oct-2023 -
Engaging with the Healthcare Developer Ecosystem in India
by Richa Tiwari
Open Health Stack Blog | 10-Oct-2023 -
Empowering Developers to Build Next Generation, Mobile-First Healthcare Solutions
by Richa Tiwari
Open Health Stack Blog | 2-Sep-2023 -
Manage FHIR Data from Android App with Open Health Stack and Google Cloud
by Abirami Sukumaran & Omar Ismail
Google Cloud Blog | 17-Aug-2023 -
7 ways Google Health is improving outcomes in Asia Pacific
by Karen DeSalvo
Google Keyword Blog | 18-Jul-2023 -
Our collaboration with WHO to improve public health
by Karen DeSalvo
Google Keyword Blog | 23-May-2023 -
New tools to help developers build better health apps
by Fred Hersch
Google Keyword Blog | 14-Mar-2023 -
Our FHIR SDK for Android Developers
by Katherine Chou & Sudhi Herle
Android Developers Blog | 24-Mar-2022 -
Working with the WHO to power digital health apps
by Fred Hersch & Jing Tang
Google Keyword Blog | 8-Dec-2021
Publications
-
MedGemma Technical Report.
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
A full-STAC remedy for global digital health transformation: open standards, technologies, architectures and content
Mehl, G. L., Seneviratne, M. G., Berg, M. L., Bidani, S., Distler, R. L., Gorgens, M., Kallander, K. E., Labrique, A. B., Landry, M. S., Leitner, C., Lubell-Doughtie, P. B., Marcelo, A. D., Matias, Y., Nelson, J., Nguyen, V., Nsengimana, J. P., Orton, M., Otzoy Garcia, D. R., Oyaole, D. R., Ratanaprayul, N., Roth, S., Schaefer, M. P., Settle, D., Tang, J., Tien-Wahser, B., Wanyee, S. & Hersch, F.
Oxf Open Digit Health, (2023). -
Collaborative Momentum: The 2023 State of the Digital Public Goods Ecosystem Report
Digital Public Goods Alliance - Promoting digital public goods to create a more equitable world (2023). 14-Dec-2023.
Blog Posts
-
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
9-Jul-2025 -
Helping everyone build AI for healthcare applications with open foundation models
by Tim Thelin & Can Kirmizibayrak
Google Research | Blog | 25-Nov-2024 -
Health-specific embedding tools for dermatology and pathology
by Dave Steiner & Rory Pilgrim
Google Research Blog | 8-Mar-2024 -
Accelerate AI development for Digital Pathology using EZ WSI DICOMWeb Python library
Google Open Source Blog | 17-May-2023 -
Using AI to Predict the Presence of Cancer Spread
by Justin Krogue, Yun Liu, Po-Hsuan Cameron Chen & Ellery A
Nature Portfolio Health Community Blog | 10-May-2023 -
Learning from deep learning: a case study of feature discovery and validation in pathology
by Ellery Wulczyn and Yun Liu
Google Research Blog | 14-Mar-2023 -
Pathology digitization and the fight against cancer
by Karen DeSalvo
Google Cloud Blog | 12-Dec-2022 -
Verily and Lumea Announce Development Partnership to Advance Digital Pathology in Prostate Cancer
Verily Blog | 16-Mar-2022 -
An International Scientific Challenge for the Diagnosis and Gleason Grading of Prostate Cancer
by Po-Hsuan Cameron Chen & Maggie Demkin
Google Research Blog | 11-Feb-2022 -
The promise of using AI to help prostate cancer care
by Po-Hsuan Cameron Chen & Yun Liu
Google Keyword Blog | 23-Sept-2021 -
PAIR @ CHI 2021
by People + AI Research
People + AI Research Blog | 14-May-2021 -
Learning from deep learning: developing interpretable AI approaches in histopathology to predict patient prognosis and explore novel features
by Dave Steiner, Yun Liu, Craig Mermel, Kurt Zatloukal, Heimo Muller, Markus Plass
npj Digital Medicine Blog | 19-Apr-2021 -
Defense Innovation Unit Selects Google Cloud to Help U.S. Military Health System with Predictive Cancer Diagnoses
Google Cloud Blog | 2-Sep-2020 -
Using AI to identify the aggressiveness of prostate cancer
by Kunal Nagpal & Craig Mermel
Google Keyword Blog | 23-Jul-2020 -
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Models
by Timo Kohlberger & Yuan Liu
Google Research Blog | 19-Feb-2020 -
Building SMILY, a Human-Centric, Similar-Image Search Tool for Pathology
by Narayan Hedge & Carrie Cai
Google Research Blog | 19-July-2019 -
Improved Grading of Prostate Cancer Using Deep Learning
by Martin Stumpe & Craig Mermel
Google Research Blog | 16-Nov-2018 -
Applying Deep Learning to Metastatic Breast Cancer Detection
by Martin Stumpe & Craig Mermel
Google Research Blog | 12-Oct-2018 -
An Augmented Reality Microscope for Cancer Detection
by Martin Stumpe & Craig Mermel
Google Research Blog | 16-Apr-2018 -
Assisting Pathologists in Detecting Cancer with Deep Learning
by Martin Stumpe & Lily Peng
Google Research Blog | 3-Mar-2017
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
PolyPath: Adapting a Large Multimodal Model for Multi-slide Pathology Report Generation
Ahmed, F., Yang, L., Jaroensri, T., Sellergren, A., Matias, Y., Hassidim, A., Corrado, G. S., Webster, D. R., Shetty, S., Prabhakara, S., Liu, Y., Golden, D., Wulczyn, E. & Steiner, D. F.
arXiv (2025). -
PathAlign: A vision-language model for whole slide images in histopathology
Ahmed, F., Sellergren, A., Yang, L., Xu, S., Babenko, B., Ward, A., Olson, N., Mohtashamian, A., Matias, Y., Corrado, G. S., Duong, Q., Webster, D. R., Shetty, S., Golden, D., Liu, Y., Steiner, D. F. & Wulczyn, E.
arXiv [cs.CV] (2024) -
Estrogen receptor gene expression prediction from H&E whole slide images
Srinivas, A. A., Jaroensri, R., Wulczyn, E., Liu, Y., Wren, J. H., Thompson, E. E., Olson, N., Beckers, F., Miao, M., Chen, P.-H. C. & Steiner, D. F.
bioRxiv (2024). -
An End-to-End Platform for Digital Pathology Using Hyperspectral Autofluorescence Microscopy and Deep Learning-Based Virtual Histology
McNeil, C., Wong, P. F., Sridhar, N., Wang, Y., Santori, C., Wu, C.-H., Homyk, A., Gutierrez, M., Behrooz, A., Tiniakos, D., Burt, A. D., Pai, R. K., Tekiela, K., Cameron Chen, P.-H., Fischer, L., Martins, E. B., Seyedkazemi, S., Freedman, D., Kim, C. C. & Cimermancic, P.
Mod. Pathol. 37, 100377 (2023). -
Domain-specific optimization and diverse evaluation of self-supervised models for histopathology
Lai, J., Ahmed, F., Vijay, S., Jaroensri, T., Loo, J., Vyawahare, S., Agarwal, S., Jamil, F., Matias, Y., Corrado, G. S., Webster, D. R., Krause, J., Liu, Y., Chen, P.-H. C., Wulczyn, E. & Steiner, D. F.
arXiv [eess.IV] (2023). -
Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
Krogue, J. D., Azizi, S., Tan, F., Flament-Auvigne, I., Brown, T., Plass, M., Reihs, R., Müller, H., Zatloukal, K., Richeson, P., Corrado, G. S., Peng, L. H., Mermel, C. H., Liu, Y., Chen, P.-H. C., Gombar, S., Montine, T., Shen, J., Steiner, D. F. & Wulczyn, E.
Commun. Med. 3, 59 (2023). -
Pathologist Validation of a Machine Learning-Derived Feature for Colon Cancer Risk Stratification
L’Imperio, V., Wulczyn, E., Plass, M., Müller, H., Tamini, N., Gianotti, L., Zucchini, N., Reihs, R., Corrado, G. S., Webster, D. R., Peng, L. H., Chen, P.-H. C., Lavitrano, M., Liu, Y., Steiner, D. F., Zatloukal, K. & Pagni, F.
JAMA Netw Open 6, e2254891 (2023). -
Deep learning models for histologic grading of breast cancer and association with disease prognosis
Jaroensri, R., Wulczyn, E., Hegde, N., Brown, T., Flament-Auvigne, I., Tan, F., Cai, Y., Nagpal, K., Rakha, E. A., Dabbs, D. J., Olson, N., Wren, J. H., Thompson, E. E., Seetao, E., Robinson, C., Miao, M., Beckers, F., Corrado, G. S., Peng, L. H., Mermel, C. H., Liu, Y., Steiner, D. F. & Chen, P.-H. C.
npj Breast Cancer 8, 1–12 (2022). -
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
Bulten, W., Kartasalo, K., Chen, P.-H. C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., Steiner, D. F., van Boven, H., Vink, R., Hulsbergen-van de Kaa, C., van der Laak, J., Amin, M. B., Evans, A. J., van der Kwast, T., Allan, R., Humphrey, P. A., Grönberg, H., Samaratunga, H., Delahunt, B., Tsuzuki, T., Häkkinen, T., Egevad, L., Demkin, M., Dane, S., Tan, F., Valkonen, M., Corrado, G. S., Peng, L., Mermel, C. H., Ruusuvuori, P., Litjens, G. & Eklund, M.
Nat. Med. 1–10 (2022). -
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images
Sadhwani, A., Chang, H.-W., Behrooz, A., Brown, T., Auvigne-Flament, I., Patel, H., Findlater, R., Velez, V., Tan, F., Tekiela, K., Wulczyn, E., Yi, E. S., Mermel, C. H., Hanks, D., Chen, P.-H. C., Kulig, K., Batenchuk, C., Steiner, D. F. & Cimermancic, P.
Sci. Rep. 11, 1–11 (2021). -
Determining breast cancer biomarker status and associated morphological features using deep learning
Gamble, P., Jaroensri, R., Wang, H., Tan, F., Moran, M., Brown, T., Flament-Auvigne, I., Rakha, E. A., Toss, M., Dabbs, D. J., Regitnig, P., Olson, N., Wren, J. H., Robinson, C., Corrado, G. S., Peng, L. H., Liu, Y., Mermel, C. H., Steiner, D. F. & Chen, P.-H. C.
Communications Medicine 1, 1–12 (2021). -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
Wulczyn, E., Nagpal, K., Symonds, M., Moran, M., Plass, M., Reihs, R., Nader, F., Tan, F., Cai, Y., Brown, T., Flament-Auvigne, I., Amin, M. B., Stumpe, M. C., Müller, H., Regitnig, P., Holzinger, A., Corrado, G. S., Peng, L. H., Chen, P.-H. C., Steiner, D. F., Zatloukal, K., Liu, Y. & Mermel, C. H.
Communications Medicine 1, 1–8 (2021). -
Onboarding Materials as Boundary Objects for Developing AI Assistants
Cai, C.J., Steiner, D., Wilcox, L., Terry, M. and Winter, S.
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM (2021). -
Interpretable survival prediction for colorectal cancer using deep learning
Wulczyn, E., Steiner, D. F., Moran, M., Plass, M., Reihs, R., Tan, F., Flament-Auvigne, I., Brown, T., Regitnig, P., Chen, P.-H. C., Hegde, N., Sadhwani, A., MacDonald, R., Ayalew, B., Corrado, G. S., Peng, L. H., Tse, D., Müller, H., Xu, Z., Liu, Y., Stumpe, M. C., Zatloukal, K. & Mermel, C. H.
npj Digital Medicine 4, 1–13 (2021). -
Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies
Steiner, D. F., Nagpal, K., Sayres, R., Foote, D. J., Wedin, B. D., Pearce, A., Cai, C. J., Winter, S. R., Symonds, M., Yatziv, L., Kapishnikov, A., Brown, T., Flament-Auvigne, I., Tan, F., Stumpe, M. C., Jiang, P.-P., Liu, Y., Chen, P.-H. C., Corrado, G. S., Terry, M. & Mermel, C. H.
JAMA Netw Open 3, e2023267–e2023267 (2020). -
Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens
Nagpal, K., Foote, D., Tan, F., Liu, Y., Chen, P.-H. C., Steiner, D. F., Manoj, N., Olson, N., Smith, J. L., Mohtashamian, A., Peterson, B., Amin, M. B., Evans, A. J., Sweet, J. W., Cheung, C., van der Kwast, T., Sangoi, A. R., Zhou, M., Allan, R., Humphrey, P. A., Hipp, J. D., Gadepalli, K., Corrado, G. S., Peng, L. H., Stumpe, M. C. & Mermel, C. H.
JAMA Oncol (2020). -
Deep learning-based survival prediction for multiple cancer types using histopathology images
Wulczyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C. H., Chen, P.-H. C., Liu, Y. & Stumpe, M. C.
PLOS ONE 15, e0233678 (2020). -
Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer Detection
Kohlberger, T., Liu, Y., Moran, M., Chen, P.-H. C., Brown, T., Hipp, J. D., Mermel, C. H. & Stumpe, M. C.
J. Pathol. Inform. 10, 39 (2019). -
An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis
Chen, P.C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G.S., Hipp, J.D., Mermel, C.H., Stumpe, M. C.
Nat Med 25, 1453–1457 (2019). [readcube]
Learn more -
Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists
Liu, Y., Kohlberger, T., Norouzi, M., Dahl, G. E., Smith, J. L., Mohtashamian, A., Olson, N., Peng, L.H., Hipp, J.D., Stumpe, M.C. (2019).
Arch. Pathol. Lab. Med. 143, 859–868 (2019). -
Similar image search for histopathology: SMILY
Hegde, N., Hipp, J. D., Liu, Y., Emmert-Buck, M., Reif, E., Smilkov, D., Terry, M., Cai, C. J., Amin, M. B., Mermel, C. H., Nelson, P. Q., Peng, L. H., Corrado, G. S. & Stumpe, M. C.
npj Digit Med 2, 56 (2019). -
"Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-Making
Cai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M.
Proceedings of the ACM on Human-computer Interaction, 3(CSCW), pp.1-24 (2019) -
Human-centered tools for coping with imperfect algorithms during medical decision-making
Cai, C.J., Reif, E., Hegde, N., Hipp, J., Kim, B., Smilkov, D., Wattenberg, M., Viegas, F., Corrado, G.S., Stumpe, M.C. and Terry, M.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-14) (2019). -
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
Nagpal, K., Foote, D., Liu, Y., Chen, P.H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L., Mohtashamian, A., Wren, J.H., Corrado, G.S., MacDonald, R., Peng, L. H., Amin, M.B., Evans, A.J., Sanjoi, A.R., Mermel, C. H., Hipp, J. D., Stumpe, M. C.
npj Digit. Med. 2, 48 (2019). -
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer
Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., Stumpe, M.C.
Am. J. Surg. Pathol. 42, 1636–1646 (2018). -
Detecting cancer metastases on gigapixel pathology images
Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S. and Hipp, J.D., Peng, L., Stumpe, M. C.
arXiv preprint arXiv:1703.02442 (2017).
Blog Posts [more above in “COVID-19 blog posts”]
-
Insights into population dynamics: A foundation model for geospatial inference
by David Schottlander & Gautam Prasad
14-Nov-2024 -
How we’re using AI to make emergency healthcare more accessible
by Shravya Shetty
Google Keyword Blog | 24-Oct-2024 -
How AI is helping advance women’s health around the world
Google Keyword Blog | 8-Mar-2024 -
New anonymized smartphone data reveals it often takes more time than expected to access healthcare in the real world: Using aggregated and anonymized data from over 100 countries to quantify inequities in access to healthcare
by Kristina Gligoric
Nature Portfolio Health Community Blog | 22-Nov-2023 -
5 ways Google is accelerating Health AI innovation in Africa
by Yossi Mattia & Shravya Shetty
Google Keyword Blog | 31-Oct-2023 -
How we’re using AI to combat floods, wildfires and extreme heat
by Yossi Matias
Google Keyword | 10-Oct-2023 -
How we’re supporting access to emergency maternal care in Nigeria
by Charlotte Stanton
Google Africa Blog | 9-May-2023 -
How we’re helping people and cities adapt to extreme heat
by Kate Brandt
Google Keyword Blog | 29-Mar-2023 -
New tools to support vaccine access and distribution
by Tomer Shekel
Google Keyword Blog | 9-Jun-2021 -
An update on our efforts to help Americans navigate COVID-19
by Ruth Porat
Google Keyword Blog | 27-Oct-2020 -
Making data useful for public health
by Katherine Chou
Google Keyword Blog | 17-Sept-2020 -
Using symptoms search trends to inform COVID-19 research
by Evgeniy Gabrilovich
Google Keyword Blog | 2-Sep-2020 -
Helping public health officials combat COVID-19
by Jen Fitzpatrick & Karen DeSalvo
Google Keyword Blog | 3-Apr-2020 -
New Insights into Human Mobility with Privacy Preserving Aggregation
by Adam Sadilek & Xerxes Dotiwalla
Google Research Blog | 12-Nov-2019
Publications
-
Quantifying urban park use in the USA at scale: empirical estimates of realised park usage using smartphone location data
Young, M. T., Vispute, S., Serghiou, S., Kumok, A., Shah, Y., Lane, K. J., Black-Ingersoll, F., Brochu, P., Bharel, M., Skenazy, S., Karthikesalingam, A., Bavadekar, S., Kansal, M., Shekel, T., Gabrilovich, E. & Wellenius, G. A.
Lancet Planet Health 8, e564–e573 (2024). -
Geographical accessibility to functional emergency obstetric care facilities in urban Nigeria using closer-to-reality travel time estimates: a population-based spatial analysis
Banke-Thomas, A., Wong, K. L. M., Olubodun, T., Macharia, P. M., Sundararajan, N., Shah, Y., Prasad, G., Kansal, M., Vispute, S., Shekel, T., Ogunyemi, O., Gwacham-Anisiobi, U., Wang, J., Abejirinde, I.-O. O., Makanga, P. T., Azodoh, N., Nzelu, C., Afolabi, B. B., Stanton, C. & Beňová, L.
The Lancet Global Health 12, e848–e858 (2024). -
Socio-spatial equity analysis of relative wealth index and emergency obstetric care accessibility in urban Nigeria
Wong, K. L. M., Banke-Thomas, A., Olubodun, T., Macharia, P. M., Stanton, C., Sundararajan, N., Shah, Y., Prasad, G., Kansal, M., Vispute, S., Shekel, T., Ogunyemi, O., Gwacham-Anisiobi, U., Wang, J., Abejirinde, I.-O. O., Makanga, P. T., Afolabi, B. B. & Beňová, L.
Commun. Med. 4, 34 (2024). -
Revealed versus potential spatial accessibility of healthcare and changing patterns during the COVID-19 pandemic
Gligorić, K., Kamath, C., Weiss, D. J., Bavadekar, S., Liu, Y., Shekel, T., Schulman, K. & Gabrilovich, E.
Communications Medicine 3, 1–11 (2023). -
A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
Macharia, P. M., Wong, K. L. M., Olubodun, T., Beňová, L., Stanton, C., Sundararajan, N., Shah, Y., Prasad, G., Kansal, M., Vispute, S., Shekel, T., Gwacham-Anisiobi, U., Ogunyemi, O., Wang, J., Abejirinde, I.-O. O., Makanga, P. T., Afolabi, B. B. & Banke-Thomas, A.
Sci Data 10, 736 (2023). -
Comparing access to urban parks across six OECD countries
Veneri, P., Kaufmann, T., Vispute, S., Shekel, T., Gabrilovich, E., Wellenius, G. A., Dijkstra, L. & Kansal, M.
(Organisation for Economic Co-Operation and Development (OECD), 2023). -
Identifying COVID-19 Vaccine Deserts and Ways to Reduce Them: A Digital Tool to Support Public Health Decision-Making
Weintraub, R. L., Miller, K., Rader, B., Rosenberg, J., Srinath, S., Woodbury, S. R., Schultheiss, M. D., Kansal, M., Vispute, S., Serghiou, S., Flores, G., Kumok, A., Shekel, T., Gabrilovich, E., Ahmad, I., Chiang, M. E. & Brownstein, J. S.
Am. J. Public Health e1–e5 (2023). -
Dense Feature Memory Augmented Transformers for COVID-19 Vaccination Search Classification
Gupta, J., Tay, Y., Kamath, C., Tran, V., Metzler, D., Bavadekar, S., Sun, M. & Gabrilovich, E.
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. 521–530 (2022). -
COVID-19 Open-Data a global-scale spatially granular meta-dataset for coronavirus disease
Wahltinez, O., Cheung, A., Alcantara, R., Cheung, D., Daswani, M., Erlinger, A., Lee, M., Yawalkar, P., Lê, P., Navarro, O. P., Brenner, M. P. & Murphy, K.
Sci Data 9, 162 (2022). -
Vaccine Search Patterns Provide Insights into Vaccination Intent
Malahy, S., Sun, M., Spangler, K., Leibler, J., Lane, K., Bavadekar, S., Kamath, C., Kumok, A., Sun, Y., Gupta, J., Griffith, T., Boulanger, A., Young, M., Stanton, C., Mayer, Y., Smith, K., Shekel, T., Chou, K., Corrado, G., Levy, J., Szpiro, A., Gabrilovich, E. & Wellenius, G. A.
arXiv [cs.SI] (2021). -
Google COVID-19 Vaccination Search Insights: Anonymization Process Description
Bavadekar, S., Boulanger, A., Davis, J., Desfontaines, D., Gabrilovich, E., Gadepalli, K., Ghazi, B., Griffith, T., Gupta, J., Kamath, C., Kraft, D., Kumar, R., Kumok, A., Mayer, Y., Manurangsi, P., Patankar, A., Perera, I. M., Scott, C., Shekel, T., Miller, B., Smith, K., Stanton, C., Sun, M., Young, M. & Wellenius, G.
arXiv [cs.CR] (2021). -
Early social distancing policies in Europe, changes in mobility & COVID-19 case trajectories: Insights from Spring 2020
Woskie, L. R., Hennessy, J., Espinosa, V., Tsai, T. C., Vispute, S., Jacobson, B. H., Cattuto, C., Gauvin, L., Tizzoni, M., Fabrikant, A., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Stanton, C., Bavadekar, S., Abueg, M., Hogue, M., Oplinger, A., Chou, K., Corrado, G., Shekel, T., Jha, A. K., Wellenius, G. A. & Gabrilovich, E.
PLoS One 16, e0253071 (2021). -
Impacts of social distancing policies on mobility and COVID-19 case growth in the US
Wellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Dai, A., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Mandayam, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B. H., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
Nat. Commun. 12, 3118 (2021). -
Forecasting influenza activity using machine-learned mobility map
Venkatramanan, S., Sadilek, A., Fadikar, A., Barrett, C. L., Biggerstaff, M., Chen, J., Dotiwalla, X., Eastham, P., Gipson, B., Higdon, D., Kucuktunc, O., Lieber, A., Lewis, B. L., Reynolds, Z., Vullikanti, A. K., Wang, L. & Marathe, M.
Nat. Commun. 12, 726 (2021). -
Global maps of travel time to healthcare facilities
Weiss, D. J., Nelson, A., Vargas-Ruiz, C. A., Gligorić, K., Bavadekar, S., Gabrilovich, E., Bertozzi-Villa, A., Rozier, J., Gibson, H. S., Shekel, T., Kamath, C., Lieber, A., Schulman, K., Shao, Y., Qarkaxhija, V., Nandi, A. K., Keddie, S. H., Rumisha, S., Amratia, P., Arambepola, R., Chestnutt, E. G., Millar, J. J., Symons, T. L., Cameron, E., Battle, K. E., Bhatt, S. & Gething, P. W.
Nat. Med. (2020). -
Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington state
Abueg, M., Hinch, R., Wu, N., Liu, L., Probert, W. J. M., Wu, A., Eastham, P., Shafi, Y., Rosencrantz, M., Dikovsky, M., Cheng, Z., Nurtay, A., Abeler-Dörner, L., Bonsall, D. G., McConnell, M. V., O’Banion, S. & Fraser, C.
medRxiv (2020). doi:10.1101/2020.08.29.20184135 -
Google COVID-19 Search Trends Symptoms Dataset: Anonymization Process Description (version 1.0)
Bavadekar, S., Dai, A., Davis, J., Desfontaines, D., Eckstein, I., Everett, K., Fabrikant, A., Flores, G., Gabrilovich, E., Gadepalli, K., Glass, S., Huang, R., Kamath, C., Kraft, D., Kumok, A., Marfatia, H., Mayer, Y., Miller, B., Pearce, A., Perera, I. M., Ramachandran, V., Raman, K., Roessler, T., Shafran, I., Shekel, T., Stanton, C., Stimes, J., Sun, M., Wellenius, G. & Zoghi, M.
arXiv [cs.CR] (2020). -
Impacts of State-Level Policies on Social Distancing in the United States Using Aggregated Mobility Data during the COVID-19 Pandemic
Wellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
arXiv [q-bio.PE] (2020). -
Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.0)
Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C., Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T., Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B. & Wilson, R. J.
arXiv [cs.CR] (2020). -
Assessing the impact of coordinated COVID-19 exit strategies across Europe
Ruktanonchai, N. W., Floyd, J. R., Lai, S., Ruktanonchai, C. W., Sadilek, A., Rente-Lourenco, P., Ben, X., Carioli, A., Gwinn, J., Steele, J. E., Prosper, O., Schneider, A., Oplinger, A., Eastham, P. & Tatem, A. J.
Science 369, 1465–1470 (2020). -
Lymelight: forecasting Lyme disease risk using web search data
Sadilek, A., Hswen, Y., Bavadekar, S., Shekel, T., Brownstein, J. S. & Gabrilovich, E.
npj Digital Medicine 3, 1–12 (2020). -
Hierarchical organization of urban mobility and its connection with city livability
Bassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gallotti, R., Ghoshal, G., Gipson, B., Hazarie, S. A., Kautz, H., Kucuktunc, O., Lieber, A., Sadilek, A., & Ramasco, J. J.
Nat. Commun. 10, 4817 (2019). -
Machine-learned epidemiology: real-time detection of foodborne illness at scale
Sadilek, A., Caty, S., DiPrete, L., Mansour, R., Schenk Jr., T., Bergtholdt, M., Jha, A., Ramaswami P., & Gabrilovich E.
npj Digital Med 1, 36 (2018).
Blog Posts
-
MedGemma: Our most capable open models for health AI development
by Daniel Golden & Rory Pilgrim
9-Jul-2025 -
Helping everyone build AI for healthcare applications with open foundation models
by Tim Thelin & Can Kirmizibayrak
Google Research | Blog | 25-Nov-2024 -
Taking medical imaging embeddings 3D
by Atilla Kiraly & Madeleine Traverse
Google Research Blog | 21-Oct-2024 -
Computer-aided diagnosis for lung cancer screening
by Atilla Kiraly & Rory Pilgrim
Google Research Blog | 20-Mar-2024 -
How AI supports early disease detection in India
by Shravya Shetty
Google Keyword Blog | 19-Mar-2024 -
How AI is helping advance women’s health around the world
Google Keyword Blog | 8-Mar-2024 -
5 ways Google is accelerating Health AI innovation in Africa
by Yossi Matias & Shravya Shetty
Google Africa Blog | 31-Oct-2023 -
7 ways Google Health is improving outcomes in Asia Pacific
by Karen DeSalvo
Google Keyword Blog | 18-Jul-2023 -
On-device fetal ultrasound assessment with TensorFlow Lite
by Angelica Willis & Akib Uddin
TensorFlow Blog | 20-Jun-2023 -
6 ways Google is working with AI in Africa
by Perry Nelson & Aisha Walcott-Bryant
Google Africa Blog | 1-Jun-2023 -
Our latest health AI research updates
by Greg Corrado & Yossi Matias
Google Keyword Blog | 14-Mar-2023 -
7 ways Google is using AI to help solve society's challenges
by Katie Malczyk
Google Keyword Blog | 17-Jan-2023 -
Partnering with iCAD to improve breast cancer screening
by Greg Corrado
Google Keyword Blog | 28-Nov-2022 -
How AI can help in the fight against breast cancer
by Nicole Linton
Google Keyword Blog | 21-Oct-2022 -
Simplified Transfer Learning for Chest Radiography Model Development
by Akib Uddin & Andrew Sellergren
Google Research Blog | 19-Jul-2022 -
The Check Up: our latest health AI developments
by Greg Corrado
Google Research Blog | 24-Mar-2022 -
Mammography collaboration in Japan
Google Japan Blog | 25-Nov-2021 -
Detecting Abnormal Chest X-rays using Deep Learning
by Zaid Nabulsi & Po-Hsuan Cameron Chen
Google Research Blog | 1-Sep-2021 -
Tackling tuberculosis screening with AI
by Rory Pilgrim & Shruthi Prabhakara
Google Keyword Blog | 18-May-2021 -
Using artificial intelligence in breast cancer screening
by Sunny Jansen & Krish Eswaran
Google Keyword Blog | 25-Feb-2021 -
Exploring AI for radiotherapy planning with Mayo Clinic
by Cian Hughes
Google Keyword Blog | 29-Oct-2020 -
Using AI to improve breast cancer screening
by Shravya Shetty & Daniel Tse
Google Keyword Blog | 1-Jan-2020 -
Developing Deep Learning Models for Chest X-rays with Adjudicated Image Labels
by Dave Steiner & Shravya Shetty
Google Research Blog | 3-Dec-2019 -
A promising step forward for predicting lung cancer
by Shravya Shetty
Google Keyword Blog | 20-May-2019
Publications
-
MedGemma Technical Report
Hughes, C., Lau, C., Chen, J., Mahvar, F., Yatziv, L., Chen, T., Sterling, B., Baby, S. A., Baby, S. M., Lai, J., Schmidgall, S., Yang, L., Chen, K., Bjornsson, P., Reddy, S., Brush, R., Philbrick, K., Hu, H., Yang, H., Tiwari, R., Jansen, S., Singh, P., Liu, Y., Azizi, S., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., Grill, J.-B., Ramos, S., Yvinec, E., Casbon, M., Buchatskaya, E., Alayrac, J.-B., Lepikhin, D., Feinberg, V., Borgeaud, S., Andreev, A., Hardin, C., Dadashi, R., Hussenot, L., Joulin, A., Bachem, O., Matias, Y., Chou, K., Hassidim, A., Goel, K., Farabet, C., Barral, J., Warkentin, T., Shlens, J., Fleet, D., Cotruta, V., Sanseviero, O., Martins, G., Kirk, P., Rao, A., Shetty, S., Steiner, D. F., Kirmizibayrak, C., Pilgrim, R., Golden, D. & Yang, L.
arXiv [cs.AI] (2025). -
CoCa-CXR: Contrastive captioners learn strong temporal structures for Chest X-Ray vision-language understanding
Chen, Y., Xu, S., Sellergren, A., Matias, Y., Hassidim, A., Shetty, S., Golden, D., Yuille, A. & Yang, L.
arXiv [cs.CV] (2025). -
Triaging mammography with artificial intelligence: an implementation study
Friedewald, S. M., Sieniek, M., Jansen, S., Mahvar, F., Kohlberger, T., Schacht, D., Bhole, S., Gupta, D., Prabhakara, S., McKinney, S. M., Caron, S., Melnick, D., Etemadi, M., Winter, S., Saensuksopa, T., Maciel, A., Speroni, L., Sevenich, M., Agharwal, A., Zhang, R., Duggan, G., Kadowaki, S., Kiraly, A. P., Yang, J., Mustafa, B., Matias, Y., Corrado, G. S., Tse, D., Eswaran, K. & Shetty, S.
Breast Cancer Res. Treat. 1–10 (2025). -
PaliGemma 2: A family of versatile VLMs for transfer
Steiner, A., Pinto, A. S., Tschannen, M., Keysers, D., Wang, X., Bitton, Y., Gritsenko, A., Minderer, M., Sherbondy, A., Long, S., Qin, S., Ingle, R., Bugliarello, E., Kazemzadeh, S., Mesnard, T., Alabdulmohsin, I., Beyer, L. & Zhai, X.
arXiv [cs.CV] (2024). -
Collaboration between clinicians and vision–language models in radiology report generation
Tanno, R., Barrett, D. G. T., Sellergren, A., Ghaisas, S., Dathathri, S., See, A., Welbl, J., Lau, C., Tu, T., Azizi, S., Singhal, K., Schaekermann, M., May, R., Lee, R., Man, S., Mahdavi, S., Ahmed, Z., Matias, Y., Barral, J., Eslami, S. M. A., Belgrave, D., Liu, Y., Kalidindi, S. R., Shetty, S., Natarajan, V., Kohli, P., Huang, P.-S., Karthikesalingam, A. & Ktena, I.
Nat. Med. 1–10 (2024). -
Prospective multi-site validation of AI to detect tuberculosis and chest X-ray abnormalities
Kazemzadeh, S., Kiraly, A. P., Nabulsi, Z., Sanjase, N., Maimbolwa, M., Shuma, B., Jamshy, S., Chen, C., Agharwal, A., T. Lau, C., Sellergren, A., Golden, D., Yu, J., Wu, E., Matias, Y., Chou, K., Corrado, G. S., Shetty, S., Tse, D., Eswaran, K., Liu, Y., Pilgrim, R., Muyoyeta, M. & Prabhakara, S.
NEJM AI 1, (2024). [PubMedCentral]
Learn more -
Artificial intelligence as a second reader for screening mammography.
Nakai, E., Miyagi, Y., Suzuki, K., Scoccia Pappagallo, A., Kayama, H., Matsuba, T., Yang, L., Xu, S., Kelly, C., Najafi, R., Kohlberger, T., Golden, D., Uddin, A., Nakamura, Y., Kokubu, Y., Takahashi, Y., Ueno, T., Oguchi, M., Ohno, S. & Ledsam, J. R.
Radiology Advances 1, (2024). -
Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
Kiraly, A. P., Cunningham, C. A., Najafi, R., Nabulsi, Z., Yang, J., Lau, C., Ledsam, J. R., Ye, W., Ardila, D., McKinney, S. M., Pilgrim, R., Liu, Y., Saito, H., Shimamura, Y., Etemadi, M., Melnick, D., Jansen, S., Corrado, G. S., Peng, L., Tse, D., Shetty, S., Prabhakara, S., Naidich, D. P., Beladia, N. & Eswaran, K.
Radiol Artif Intell e230079 (2024). -
Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
Lucido, J. J., DeWees, T. A., Leavitt, T. R., Anand, A., Beltran, C. J., Brooke, M. D., Buroker, J. R., Foote, R. L., Foss, O. R., Gleason, A. M., Hodge, T. L., Hughes, C. O., Hunzeker, A. E., Laack, N. N., Lenz, T. K., Livne, M., Morigami, M., Moseley, D. J., Undahl, L. M., Patel, Y., Tryggestad, E. J., Walker, M. Z., Zverovitch, A. & Patel, S. H.
Front. Oncol. 13, (2023). -
Development of a Machine Learning Model for Sonographic Assessment of Gestational Age
Lee, C., Willis, A., Chen, C., Sieniek, M., Watters, A., Stetson, B., Uddin, A., Wong, J., Pilgrim, R., Chou, K., Tse, D., Shetty, S. & Gomes, R. G.
JAMA Netw Open 6, e2248685 (2023). -
A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessment
Gomes, R. G., Vwalika, B., Lee, C., Willis, A., Sieniek, M., Price, J. T., Chen, C., Kasaro, M. P., Taylor, J. A., Stringer, E. M., McKinney, S. M., Sindano, N., Dahl, G. E., Goodnight, W., Gilmer, J., Chi, B. H., Lau, C., Spitz, T., Saensuksopa, T., Liu, K., Tiyasirichokchai, T., Wong, J., Pilgrim, R., Uddin, A., Corrado, G., Peng, L., Chou, K., Tse, D., Stringer, J. S. A. & Shetty, S.
Communications Medicine 2, 1–9 (2022). -
Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists
Kazemzadeh, S., Yu, J., Jamshy, S., Pilgrim, R., Nabulsi, Z., Chen, C., Beladia, N., Lau, C., McKinney, S. M., Hughes, T., Kiraly, A. P., Kalidindi, S. R., Muyoyeta, M., Malemela, J., Shih, T., Corrado, G. S., Peng, L., Chou, K., Chen, P.-H. C., Liu, Y., Eswaran, K., Tse, D., Shetty, S. & Prabhakara, S.
Radiology 212213 (2022). -
Simplified Transfer Learning for Chest Radiography Models Using Less Data
Sellergren, A. B., Chen, C., Nabulsi, Z., Li, Y., Maschinot, A., Sarna, A., Huang, J., Lau, C., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Liu, Y., Eswaran, K., Tse, D., Beladia, N., Krishnan, D. & Shetty, S.
Radiology 212482 (2022). -
Study Design: Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
Anand, A., Beltran, C. J., Brooke, M. D., Buroker, J. R., DeWees, T. A., Foote, R. L., Foss, O. R., Hughes, C. O., Hunzeker, A. E., John Lucido, J., Morigami, M., Moseley, D. J., Pafundi, D. H., Patel, S. H., Patel, Y., Ridgway, A. K., Tryggestad, E. J., Wilson, M. Z., Xi, L. & Zverovitch, A.
medRxiv 2021.12.07.21266421 (2021). -
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
Nabulsi, Z., Sellergren, A., Jamshy, S., Lau, C., Santos, E., Kiraly, A. P., Ye, W., Yang, J., Pilgrim, R., Kazemzadeh, S., Yu, J., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Corrado, G. S., Peng, L., Eswaran, K., Tse, D., Beladia, N., Liu, Y., Chen, P.-H. C. & Shetty, S.
Sci. Rep. 11, 1–15 (2021). -
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study
Nikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., Patel, Y., Meyer, C., Askham, H., Romera-Paredes, B., Kelly, C., Karthikesalingam, A., Chu, C., Carnell, D., Boon, C., D’Souza, D., Moinuddin, S. A., Garie, B., McQuinlan, Y., Ireland, S., Hampton, K., Fuller, K., Montgomery, H., Rees, G., Suleyman, M., Back, T., Hughes, C. O., Ledsam, J. R. & Ronneberger, O.
J. Med. Internet Res. 23, e26151 (2021). -
Improving reference standards for validation of AI-based radiography
Duggan, G. E., Reicher, J. J., Liu, Y., Tse, D. & Shetty, S.
Br J Radiol. 94, 20210435 (2021). -
International evaluation of an AI system for breast cancer screening
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., Melnick, D., Mostofi, H., Peng, L., Reicher, J. J., Romera-Paredes, B., Sidebottom, R., Suleyman, M., Tse, D., Young, K. C., De Fauw, J. & Shetty, S.
Nature 577, 89–94 (2020). [readcube]
Learn more -
Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation
Majkowska, A., Mittal, S., Steiner, D. F., Reicher, J. J., McKinney, S. M., Duggan, G. E., Eswaran, K., Cameron Chen, P.-H., Liu, Y., Kalidindi, S. R., Ding, A., Corrado, G. S., Tse, D. & Shetty, S.
Radiology 191293 (2019). -
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reciher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., Shetty, S.
Nat. Med. 25, 954–961 (2019). [readcube]
Learn more
Blog Posts [more at YouTube Official Blog ]
-
Exploring how AI tools can help increase high-quality health content
by Garth Graham & Viknesh Sounderajah
YouTube Official Blog | 23-Oct-2024 -
How we’re using AI to connect people to health information
Google Keyword Blog | 19-Mar-2024 -
Safer Internet Day: Supporting teen mental health and wellbeing on YouTube
by The YouTube Team
Youtube Official Blog | 6-Feb-2024 -
Elevating first aid information on YouTube search
by Garth Graham
Youtube Official Blog | 10-Jan-2024 -
How AI helps make public health truly public
by Garth Graham
Youtube Official Blog | 14-Dec-2023 -
Continued support for teen wellbeing and mental health on YouTube
by James Beser
Youtube Official Blog | 2-Nov-2023 -
Expanding equitable access to health information on YouTube
by Garth Graham
Youtube Official Blog | 7-Sep-2023 -
A long term vision for YouTube’s medical misinformation policies
Youtube Official Blog | 15-Aug-2023 -
New ways for UK licensed healthcare professionals to reach viewers on YouTube
Youtube Official Blog | 12-Jun-2023 -
Mental Health Action Day: Small steps to support your mental health
Youtube Official Blog | 15-May-2023 -
An updated approach to eating disorder-related content
by Garth Graham
Youtube Official Blog | 18-Apr-2023 -
Finding connection and support this World Mental Health Day
by Jessica DiVento Dzuban
Youtube Official Blog | 7-Oct-2022 -
Expanding clinicians’ access to Continuing Education
by Garth Graham
Youtube Official Blog | 1-Mar-2023 -
8 things we launched in 2022 to support your health
by Iz Conroy
Google Keyword Blog | 21-Dec-2022 -
New ways for licensed healthcare professionals to reach people on YouTube
by Garth Graham
Youtube Official Blog | 27-Oct-2022 -
Answering the human questions: How we’re putting patient voices front and center
by Garth Graham
Youtube Official Blog | 28–Sep-2022 -
Our work toward health equity
by Ivor Horn
Google Keyword Blog | 12-Sep-2022 -
Introducing THE-IQ: tackling health equity with YouTube Health and Kaiser Family Foundation
by Garth Graham
Youtube Official Blog | 12–Sep-2022 -
New ways to answer your health questions in the United Kingdom
by Garth Graham
Youtube Official Blog | 15-Jun-2022 -
The Check Up: helping people live healthier lives
by Karen DeSalvo
Google Keyword Blog | 24-Mar-2022 -
Answering your health questions in Brazil, India, and Japan
by Garth Graham
Youtube Official Blog | 24-Mar-2022 -
Access to information is a health equity issue. Here’s how YouTube is helping make high quality health information available to everyone
by Garth Graham
Youtube Official Blog | 26-Jan-2022 -
Doctors bring their expertise on vaccines to YouTube
by Garth Graham
Youtube Official Blog | 13-Oct-2021 -
Introducing new ways to help you find answers to your health questions
by Garth Graham
Youtube Official Blog | 19-Jul-2021