-
Blog Posts [more at Google Keyword Blog & Google AI Blog]
3 ways AI is scaling helpful technologies worldwideby Jeff Dean
Google Keyword Blog | 2-Nov-2022
-
Blog Posts
Democratizing access to healthby Karen DeSalvo
Google Keyword Blog | 27-Oct-2022
-
Blog Posts
How AI can help in the fight against breast cancerby Nicole Linton
Google Keyword Blog | 21-Oct-2022
-
Blog Posts
Google Assistant offers information and hope for Breast Cancer Awareness Monthby Riva Sciuto
Google Keyword Blog | 19-Oct-2022
-
Blog Posts
Our work toward health equityby Ivor Horn
Google Keyword Blog | 12-Sep-2022
-
Blog Posts
Dr. Von Nguyen’s temperature check on public healthby Lauren Winer
Google Keyword Blog | 25-Aug-2022
-
Blog Posts
Suicide prevention resources on Google Searchby Anne Merritt
Google Keyword Blog | 20-Jul-2022
-
Blog Posts
Mental health resources you can count onby Megan Jones Bell
Google Keyword Blog | 17-May-2022
-
Blog Posts
Raising awareness of the dangers of fentanylby Megan Jones Bell & Garth Graham
Google Keyword Blog | 10-May-2022
-
Blog Posts
The Check Up: our latest health AI developmentsby Greg Corrado
Google AI Blog | 24-Mar-2022
-
Blog Posts
The Check Up: helping people live healthier livesby Karen DeSalvo
Google Keyword Blog | 24-Mar-2022
-
Blog Posts
Our FHIR SDK for Android Developersby Katherine Chou & Sudhi Herle
Android Developers Blog | 24-Mar-2022
-
Blog Posts
Extending Care Studio with a new healthcare partnershipby Paul Muret
Google Keyword Blog | 15-Mar-2022
-
Blog Posts
Take a look at Conditions, our new feature in Care Studioby Paul Muret
Google Keyword Blog | 8-Mar-2022
-
Blog Posts
Google Research: Themes from 2021 and Beyondby Jeff Dean
Google Research Blog | 11-Jan-2022
-
Blog Posts
Working with the WHO to power digital health appsby Fred Hersch & Jing Tang
Google Keyword Blog | 8-Dec-2021
-
Blog Posts
Making healthcare options more accessible on Searchby Hema Budaraju
Google Keyword Blog | 2-Dec-2021
-
Blog Posts
HLTH: Building on our commitments in healthby Karen DeSalvo
Google Keyword Blog | 17-Oct-2021
-
Blog Posts
When it comes to mental health, what are we searching for?by Alicia Cormie
Google Keyword Blog | 6-May-2021
-
Blog Posts
Dr. Ivor Horn talks about technology and health equityby Alicia Cormie
Google Keyword Blog | 16-Apr-2021
-
Blog Posts
Our Care Studio pilot is expanding to more cliniciansby Paul Muret
Google Keyword Blog | 23- Feb-2021
-
Blog Posts
Google Research: Looking Back at 2020, and Forward to 2021by Jeff Dean
Google Research Blog | 12-Jan-2021
-
Blog Posts
A new Google Search tool to support women with postpartum depressionby David Feinberg
LinkedIn Blog | 8-Dec-2020
-
Blog Posts
Prepare for medical visits with help from Google and AHRQby Dave Greenwood
Google Keyword Blog | 2-Dec-2020
-
Blog Posts
A Collaborative Approach to Shaping Successful UX Critique Practicesby Anna Lurchenko
Google Design Blog | 29-Jul-2020
-
Blog Posts
Learn more about anxiety with a self-assessment on Searchby Daniel Gillison, Jr
Google Keyword Blog | 28-May-2020
-
Blog Posts
Google Research: Looking Back at 2019, and Forward to 2020 and Beyondby Jeff Dean
Google Research Blog | 9-Jan-2020
-
Blog Posts
Lessons Learned from Developing ML for Healthcareby Yun Liu & Po-Hsuan Cameron Chen
Google AI Blog | 10-Dec-2019
-
Blog Posts
Tools to help healthcare providers deliver better careby David Feinberg
Google Keyword Blog | 20-Nov-2019
-
Blog Posts
Breast cancer and tech...a reason for optimismby Ruth Porat
Google Keyword Blog | 21-Oct-2019
-
Blog Posts
DeepMind’s health team joins Google Healthby Dominic King
Google Keyword Blog | 18-Sep-2019
-
Blog Posts
Looking Back at Google’s Research Efforts in 2018by Jeff Dean
Google Research Blog | 15-Jan-2019
-
Blog Posts
Meet David Feinberg, head of Google Healthby Google
Google Keyword Blog | 17-Jun-2019
-
Blog Posts
AI for Social Good in Asia Pacificby Kent Walter
Google Keyword Blog | 13-Dec-2018
-
Blog Posts
The Google Brain Team — Looking Back on 2017 (Part 2 of 2)by Jeff Dean
Google Research Blog | 12-Jan-2018
-
Blog Posts
Gain a deeper understanding of Posttraumatic Stress Disorder on Googleby Paula Schnurr & Teri Brister
Google Keyword Blog | 5-Dec-2017
-
Blog Posts
Learning more about clinical depression with the PHQ-9 questionnaireby Mary Giliberti
Google Keyword Blog | 23-Aug-2017
-
Blog Posts
Partnering on machine learning in healthcareby Katherine Chou
Google AI Blog | 17-May-2017
-
Blog Posts
The Google Brain Team — Looking Back on 2016by Jeff Dean
Google Research Blog | 12-Jan-2017
-
COVID-19 Blog Posts
Supporting evolving COVID information needsby Hema Budaraju
Google Keyword Blog | 16-Jun-2022
-
COVID-19 Blog Posts [more at Google Keyword Blog]
Group effort: How we helped launch an NYC vaccine siteby Lauren Gallagher
Google Keyword Blog | 11-Feb-2022
-
COVID-19 Blog Posts [more at Google Keyword Blog]
This year, we searched for ways to stay healthyby Hema Budaraju
Google Keyword Blog | 8-Dec-2021
-
COVID-19 Blog Posts
New tools to support vaccine access and distributionby Tomer Shekel
Google Keyword Blog | 9-Jun-2021
-
COVID-19 Blog Posts
An update on our COVID response prioritiesby the COVID Response team, Google India
Google India Blog | 10-May-2021
-
COVID-19 Blog Posts
Our commitment to COVID-19 vaccine equityby Karen DeSalvo
Google Keyword Blog | 15-Apr-2021[Spanish version]
-
COVID-19 Blog Posts
How anonymized data helps fight against diseaseby Stephen Ratcliffe
Google Keyword Blog | 24-Feb-2021
-
COVID-19 Blog Posts
How we’re helping get vaccines to more peopleby Sundar Pichai
Google Keyword Blog | 25-Jan-2021
-
COVID-19 Blog Posts
Exposure Notifications: end of year updateby Steph Hannon
Google Keyword Blog | 11-Dec-2020
-
COVID-19 Blog Posts
How you'll find accurate and timely information on COVID-19 vaccinesby Karen DeSalvo & Kristie Canegallo
Google Keyword Blog | 10-Dec-2020
-
COVID-19 Blog Posts
How I’m giving thanks (and staying safe) this Thanksgivingby Karen DeSalvo
Google Keyword Blog | 24-Nov-2020 [Spanish version]
-
COVID-19 Blog Posts
A Q&A on coronavirus vaccinesGoogle Keyword Blog
10-Nov-2020
-
COVID-19 Blog Posts
An update on our efforts to help Americans navigate COVID-19by Ruth Porat
Google Keyword Blog | 27-Oct-2020
-
COVID-19 Blog Posts
Making data useful for public healthby Katherine Chou
Google Keyword Blog | 17-Sept-2020
-
COVID-19 Blog Posts
Google supports COVID-19 AI and data analytics projectsby Mollie Javerbaum & Meghan Houghton
Google Keyword Blog | 10-Sep-2020
-
COVID-19 Blog Posts
Using symptoms search trends to inform COVID-19 researchby Evgeniy Gabrilovich
Google Keyword Blog | 2-Sep-2020
-
COVID-19 Blog Posts
An update on Exposure Notificationsby Dave Burke
Google Keyword Blog | 31-Jul-2020
-
COVID-19 Blog Posts
Exposure Notification API launches to support public health agenciesby Apple & Google
Google Keyword Blog | 20-May-2020
-
COVID-19 Blog Posts
Dr. Karen DeSalvo on ‘putting information first’ during COVID-19by Megan Washam
Google Keyword Blog | 13-May-2020
-
COVID-19 Blog Posts
Resources for mental health support during COVID-19by David Feinberg
Google Keyword Blog | 8-May-2020
-
COVID-19 Blog Posts
Apple and Google partner on COVID-19 contact tracing technologyby Apple & Google
Google Keyword Blog | 10-Apr-2020
-
COVID-19 Blog Posts
Connecting people to virtual care optionsby Julie Black
Google Keyword Blog | 10-Apr-2020
-
COVID-19 Blog Posts
Support for public health workers fighting COVID-19by Karen DeSalvo
Google Keyword Blog | 6-Apr-2020
-
COVID-19 Blog Posts
Helping public health officials combat COVID-19by Jen Fitzpatrick & Karen DeSalvo
Google Keyword Blog | 3-Apr-2020
-
COVID-19 Blog Posts
Connecting people with COVID-19 information and resourcesby Emily Moxley
Google Keyword Blog | 21-Mar-2020
-
COVID-19 Blog Posts
COVID-19: How we’re continuing to helpby Sundar Pichai
Google Keyword Blog | 15-Mar-2020
-
COVID-19 Blog Posts
Coronavirus: How we’re helpingby Sundar Pichai
Google Keyword Blog | 6-Mar-2020
-
Reviews
Medicine’s Role in Reimagining Public Health: Reuniting Panacea and HygeiaDeSalvo, K. B., Kadakia, K. T. & Chokshi, D. A.
JAMA Health Forum 2, e214051–e214051 (2021).
-
Reviews
Modernizing Public Health Data Systems: Lessons From the Health Information Technology for Economic and Clinical Health (HITECH) ActKadakia, K. T., Howell, M. D. & DeSalvo, K. B.
JAMA 326, 385–386 (2021).
-
Reviews
Public Health 3.0 After COVID-19-Reboot or Upgrade?DeSalvo, K. B. & Kadakia, K. T.
Am. J. Public Health 111, S179–S181 (2021).
-
Reviews
A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AISounderajah, V., Ashrafian, H., Rose, S., Shah, N. H., Ghassemi, M., Golub, R., Kahn, C. E., Jr, Esteva, A., Karthikesalingam, A., Mateen, B., Webster, D., Milea, D., Ting, D., Treanor, D., Cushnan, D., King, D., McPherson, D., Glocker, B., Greaves, F., Harling, L., Ordish, J., Cohen, J. F., Deeks, J., Leeflang, M., Diamond, M., McInnes, M. D. F., McCradden, M., Abràmoff, M. D., Normahani, P., Markar, S. R., Chang, S., Liu, X., Mallett, S., Shetty, S., Denniston, A., Collins, G. S., Moher, D., Whiting, P., Bossuyt, P. M. & Darzi, A.
Nat. Med. (2021).
-
Reviews
Evaluation of artificial intelligence on a reference standard based on subjective interpretationChen, P.-H. C., Mermel, C. H. & Liu, Y.
The Lancet Digital Health (2021). doi:10.1016/S2589-7500(21)00216-8
-
Reviews
Artificial Intelligence in MedicineKelly, C. J., Brown, A. P. Y. & Taylor, J. A.
(eds. Lidströmer, N. & Ashrafian, H.) 1–18 (Springer International Publishing, 2021).
-
Reviews
Challenges of Accuracy in Germline Clinical Sequencing DataPoplin, R., Zook, J. M. & DePristo, M.
JAMA 326, 268–269 (2021).
-
Reviews
Retinal detection of kidney disease and diabetesMitani, A., Hammel, N. & Liu, Y.
Nature Biomedical Engineering 1–3 (2021). [readcube]
-
Reviews
Deep learning-enabled medical computer visionEsteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J. & Socher, R.
npj Digital Medicine 4, 5 (2021).
-
Reviews
Closing the translation gap: AI applications in digital pathologySteiner, D. F., Chen, P.-H. C. & Mermel, C. H.
Biochim. Biophys. Acta Rev. Cancer 1875, 188452 (2021).
-
Reviews
Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographsLiu, Y., Yang, L., Phene, S. & Peng, L.
Artificial Intelligence in Medicine 247–264 (2021).
-
Reviews
Resonate: Reaching Excellence Through Equity, Diversity, and Inclusion in ISMRMWarnert, E. A. H., Kasper, L., Meltzer, C. C., Lightfoote, J. B., Bucknor, M. D., Haroon, H., Duggan, G., Gowland, P., Wald, L., Miller, K. L., Morris, E. A. & Anazodo, U. C.
J. Magn. Reson. Imaging (2020). doi:10.1002/jmri.27476 [readcube]
-
Reviews
Current and future applications of artificial intelligence in pathology: a clinical perspectiveRakha, E. A., Toss, M., Shiino, S., Gamble, P., Jaroensri, R., Mermel, C. H. & Chen, P.-H. C.
J. Clin. Pathol. (2020). doi:10.1136/jclinpath-2020-206908
-
Reviews
Artificial intelligence, machine learning and deep learning for eye care specialistsSayres, R., Hammel, N. & Liu, Y.
Annals of Eye Science 5, 18–18 (2020).
-
Reviews
Artificial intelligence in digital breast pathology: Techniques and applicationsIbrahim, A., Gamble, P., Jaroensri, R., Abdelsamea, M. M., Mermel, C. H., Chen, P.-H. C. & Rakha, E. A.
Breast 49, 267–273 (2020).
-
Reviews
How to Read Articles That Use Machine Learning: Users’ Guides to the Medical LiteratureLiu, Y., Chen, P.-H. C., Krause, J. & Peng, L.
JAMA 322, 1806–1816 (2019). [readcube]
-
Reviews
Key challenges for delivering clinical impact with artificial intelligenceKelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D.
BMC Med. 17, 195 (2019).
-
Reviews
Ensuring Fairness in Machine Learning to Advance Health EquityRajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H.
Ann. Intern. Med. 169(12):866-872 (2018).
-
Reviews
Artificial Intelligence Approach in MelanomaCuriel-Lewandrowski, C., Novoa, R. A., Berry, E., Celebi, M. E., Codella, N., Giuste, F., Gutman, D., Halpern, A., Leachman, S., Liu, Y., Liu, Y., Reiter, O. & Tschandl, P.
599–628. Springer New York (2019).
-
Reviews
How to develop machine learning models for healthcareChen, C. P.-H., Liu, Y., & Peng, L.
Nat. Mater. 18, 410–414 (2019). [readcube]
-
Reviews
Machine Learning in MedicineRajkomar, A., Dean, J., & Kohane I.
N. Engl. J. Med. 380:1347-1358 (2019).
-
Reviews
A guide to deep learning in healthcareEsteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S. & Dean, J.
Nat. Med. 25, 24–29 (2019). [readcube]
-
Reviews
When does size matter? -- Promises, pitfalls, and appropriate interpretations of ‘big’ dataRough K, Thompson J.
Ophthalmology. 125(8):1136-1138 (2018).
-
Reviews
Resolving the Productivity Paradox of Health Information Technology: A Time for OptimismWachter, R. M., Howell, M. D.
JAMA 320(1):25-26 (2018).
-
Blog Posts
How Underspecification Presents Challenges for Machine Learningby Alex D’Amour and Katherine Heller
Google AI Blog | 18-Oct-2021
-
Blog Posts
Self-Supervised Learning Advances Medical Image Classificationby Shekoofeh Azizi
Google AI Blog | 13-Oct-2021
-
Publications
Iterative Quality Control Strategies for Expert Medical Image LabelingFreeman, B., Hammel, N., Phene, S., Huang, A., Ackermann, R., Kanzheleva, O., Hutson, M., Taggart, C., Duong, Q. & Sayres, R.
HCOMP 9, 60–71 (2021).
-
Publications
Big Self-Supervised Models Advance Medical Image ClassificationAzizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 3478–3488 (2021).
-
Publications
Privacy-first health research with federated learningSadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M., Serghiou, S., Rader, B., Ingerman, A., Mellem, S., Kairouz, P., Nsoesie, E. O., MacFarlane, J., Vullikanti, A., Marathe, M., Eastham, P., Brownstein, J. S., Arcas, B. A. Y., Howell, M. D. & Hernandez, J.
NPJ Digit Med 4, 132 (2021).
-
Publications
Supervised Transfer Learning at Scale for Medical ImagingMustafa, B., Loh, A., Freyberg, J., MacWilliams, P., Karthikesalingam, A., Houlsby, N. & Natarajan, V.
arXiv [cs.CV] (2021).
-
Publications
Big Self-Supervised Models Advance Medical Image ClassificationAzizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthikesalingam, A., Kornblith, S., Chen, T., Natarajan, V. & Norouzi, M.
arXiv [eess.IV] (2021).
-
Publications
Underspecification Presents Challenges for Credibility in Modern Machine LearningD’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X. & Sculley, D.
arXiv [cs.LG] (2020).
-
Publications
Contrastive Training for Improved Out-of-Distribution DetectionWinkens, J., Bunel, R., Roy, A. G., Stanforth, R., Natarajan, V., Ledsam, J. R., MacWilliams, P., Kohli, P., Karthikesalingam, A., Kohl, S., Cemgil, T., Ali Eslami, S. M. & Ronneberger, O.
arXiv [cs.LG] (2020).
-
Publications
Customization scenarios for de-identification of clinical notesHartman, T., Howell, M., Dean, J., Hoory, S., Slyper, R., Laish, I., Gilon, O, Vainstein, D., Corrado, G., Chou, K., Po, M., Williams, J., Ellis, S., Bee, G., Hassidim, A., Amira, R., Beryozkin, G., Szpektor, I., & Matias, Y.
BMC (2020).
-
Blog Posts
How DermAssist uses TensorFlow.js for on-device image quality checksby Miles Hutson & Aaron Loh
TensorFlow Blog | 11-Oct-2021
-
Blog Posts
Using AI to help find answers to common skin conditionsby Peggy Bui & Yuan Liu
Google Keyword Blog | 18-May-2021
-
Blog Posts
AI assists doctors in interpreting skin conditionsby Ayush Jain & Peggy Bui
Google Keyword Blog | 28-Apr-2021
-
Blog Posts
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Modelsby Timo Kohlberger & Yuan Liu
Google AI Blog | 19-Feb-2020
-
Blog Posts
Using Deep Learning to Inform Differential Diagnoses of Skin Diseasesby Yuan Liu & Peggy Bui
Google AI Blog | 12-Sep-2019
-
Publications
Machine learning for clinical operations improvement via case triagingHuang, S. J., Liu, Y., Kanada, K., Corrado, G. S., Webster, D. R., Peng, L., Bui, P. & Liu, Y
Skin Health and Disease (2021)
-
Publications
Does your dermatology classifier know what it doesn’t know? Detecting the long-tail of unseen conditionsGuha Roy, A., Ren, J., Azizi, S., Loh, A., Natarajan, V., Mustafa, B., Pawlowski, N., Freyberg, J., Liu, Y., Beaver, Z., Vo, N., Bui, P., Winter, S., MacWilliams, P., Corrado, G. S., Telang, U., Liu, Y., Cemgil, T., Karthikesalingam, A., Lakshminarayanan, B. & Winkens, J.
Med. Image Analysis. 75, 102274 (2021). [reading link]
-
Publications
Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology PracticesWeng, W.-H., Deaton, J., Natarajan, V., Elsayed, G. F. & Liu, Y
JAMA Netw Open 4, e217249–e217249 (2021).
-
Publications
Addressing the Real-world Class Imbalance Problem in DermatologyWeng, W.-H., Deaton, J., Natarajan, V., Elsayed, G. F. & Liu, Y.
Machine Learning for Health NeurIPS Workshop (ML4H), PMLR 136:415-429 (2020).
-
Publications
Agreement Between Saliency Maps and Human-Labeled Regions of Interest: Applications to Skin Disease ClassificationSingh, N., Lee, K., Coz, D., Angermueller, C., Huang, S., Loh, A. & Liu, Y.
in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 3172–3181 (2020).
-
Publications
A deep learning system for differential diagnosis of skin diseasesLiu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., Kanada, K., de Oliveira Marinho, G., Gallegos, J., Gabriele, S., Gupta, V., Singh, N., Natarajan, V., Hofmann-Wellenhof, R., Corrado, G. S., Peng, L. H., Webster, D. R., Ai, D., Huang, S., Liu, Y., Carter Dunn, R. & Coz, D.
Nat. Med. (2020). [readcube]
-
Publications
DermGAN: Synthetic Generation of Clinical Skin Images with PathologyGhorbani, A., Natarajan, V., Coz, D. & Liu, Y.
Machine Learning for Health NeurIPS Workshop (ML4H), PMLR 116:155-170 (2020).
-
Publications
Measuring clinician-machine agreement in differential diagnoses for dermatologyEng, C., Liu, Y. & Bhatnagar, R.
Br. J. Dermatol. (2019). readcube
-
Blog Posts
Improved Detection of Elusive Polyps via Machine Learningby Yossi Matias & Ehud Rivlin
Google AI Blog | 5-Aug-2021
-
Blog Posts
Verily Opens New R&D Center in Israel Focused on the Application of AI in Healthcareby Robin Suchan
Verily Press | 5-Aug-2021
-
Blog Posts
Using Machine Learning to Detect Deficient Coverage in Colonoscopy Screeningsby Daniel Freedman & Ehud Rivlin
Google AI Blog | 28-Aug-2020
-
Publications
Artificial intelligence for phase recognition in complex laparoscopic cholecystectomyGolany, T., Aides, A., Freedman, D., Rabani, N., Liu, Y., Rivlin, E., Corrado, G. S., Matias, Y., Khoury, W., Kashtan, H. & Reissman, P.
Surg. Endosc. (2022).
-
Publications
Detection of elusive polyps via a large-scale artificial intelligence system (with videos)Livovsky, D. M., Veikherman, D., Golany, T., Aides, A., Dashinsky, V., Rabani, N., Ben Shimol, D., Blau, Y., Katzir, L., Shimshoni, I., Liu, Y., Segol, O., Goldin, E., Corrado, G., Lachter, J., Matias, Y., Rivlin, E. & Freedman, D.
Gastrointest. Endosc. (2021).
-
Publications
Detecting Deficient Coverage in ColonoscopiesFreedman, D., Blau, Y., Katzir, L., Aides, A., Shimshoni, I., Veikherman, D., Golany, T., Gordon, A., Corrado, G., Matias, Y. & Rivlin, E.
IEEE Trans. Med. Imaging 1–1 (2020).
-
Blog Posts
Healthcare AI systems that put people at the centerby Emma Beede
Google Keyword Blog | 25-Apr-2020
-
Blog Posts
New milestones in helping prevent eye disease with Verilyby Kasumi Widner & Sunny Virmani
Google Keyword Blog | 25-Feb-2019
-
Blog Posts
Launching a powerful new screening tool for diabetic eye disease in IndiaVerily Blog | 25-Feb-2019
-
Blog Posts
Improving the Effectiveness of Diabetic Retinopathy Modelsby Rory Sayres & Jonathan Krause
Google AI Blog | 13-Dec-2018
-
Blog Posts
A major milestone for the treatment of eye diseaseby Mustafa Suleyman
DeepMind Blog | 13-Aug-2018
-
Blog Posts
Detecting diabetic eye disease with machine learningby Lily Peng
Google Keyword Blog | 29-Nov-2016
-
Blog Posts
Deep learning for Detection of Diabetic Eye Diseaseby Lily Peng & Varun Gulshan
Google AI Blog | 29-Nov-2016
-
Publications
Redesigning Clinical Pathways for Immediate Diabetic Retinopathy Screening ResultsPedersen Elin Rønby, Cuadros Jorge, Khan Mahbuba, Fleischmann Sybille, Wolff Gregory, Hammel Naama, Liu Yun & Leung Geoffrey.
NEJM Catalyst (2021).
-
Publications
Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep LearningWilson, M., Chopra, R., Wilson, M. Z., Cooper, C., MacWilliams, P., Liu, Y., Wulczyn, E., Florea, D., Hughes, C. O., Karthikesalingam, A., Khalid, H., Vermeirsch, S., Nicholson, L., Keane, P. A., Balaskas, K. & Kelly, C. J.
JAMA Ophthalmol. (2021).
-
Publications
Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human GradersLimwattanayingyong, J., Nganthavee, V., Seresirikachorn, K., Singalavanija, T., Soonthornworasiri, N., Ruamviboonsuk, V., Rao, C., Raman, R., Grzybowski, A., Schaekermann, M., Peng, L. H., Webster, D. R., Semturs, C., Krause, J., Sayres, R., Hersch, F., Tiwari, R., Liu, Y. & Ruamviboonsuk, P.
Journal of Diabetes Research, 1–8 (2020).
-
Publications
Improving medical annotation quality to decrease labeling burden using stratified noisy cross-validationHsu J, Phene S, Mitani A, Luo J, Hammel N, Krause J, Sayres R.
in ACM-CHIL [arXiv](2020)
-
Publications
Adherence to ophthalmology referral, treatment and follow-up after diabetic retinopathy screening in the primary care settingBresnick, G., Cuadros, J. A., Khan, M., Fleischmann, S., Wolff, G., Limon, A., Chang, J., Jiang, L., Cuadros, P. & Pedersen, E. R.
BMJ Open Diabetes Research and Care 8, e001154 (2020).
-
Publications
A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic RetinopathyBeede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P. & Vardoulakis, L. M.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–12. Association for Computing Machinery (2020).
-
Publications
Expert Discussions Improve Comprehension of Difficult Cases in Medical Image AssessmentSchaekermann, M., Cai, C. J., Huang, A. E. & Sayres, R.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 1–13. Association for Computing Machinery (2020).
-
Publications
Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus PhotographsPhene, S., Dunn, R. C., Hammel, N., Liu, Y., Krause, J., Kitade, N., Schaekermann, M., Sayres, R., Wu, D. J., Bora, A., Semturs, C., Misra, A., Huang, A. E., Spitze, A., Medeiros, F. A., Maa, A. Y., Gandhi, M., Corrado, G. S., Peng, L. & Webster, D. R.
Ophthalmology 126, 1627–1639 (2019).
-
Publications
Remote Tool-Based Adjudication for Grading Diabetic RetinopathySchaekermann, M., Hammel, N., Terry, M., Ali, T. K., Liu, Y., Basham, B., Campana, B., Chen, W., Ji, X., Krause, J., Corrado, G. S., Peng, L., Webster, D. R., Law, E. & Sayres, R.
Transl. Vis. Sci. Technol. 8, 40 (2019).
-
Publications
Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in IndiaGulshan, V., Rajan, R. P., Widner, K., Wu, D., Wubbels, P., Rhodes, T., Whitehouse, K., Coram, M., Corrado, G., Ramasamy, K., Raman, R., Peng, L. & Webster, D. R.
JAMA Ophthalmol. (2019).
-
Publications
Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening programRuamviboonsuk, P., Krause, J., Chotcomwongse, P., Sayres, R., Raman, R., Widner, K., Campana, B. J. L., Phene, S., Hemarat, K., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Rao, C., Kuruvilla, O., Jung, J., Tan, J., Orprayoon, S., Kangwanwongpaisan, C., Sukumalpaiboon, R., Luengchaichawang, C., Fuangkaew, J., Kongsap, P., Chualinpha, L., Saree, S., Kawinpanitan, S., Mitvongsa, K., Lawanasakol, S., Thepchatri, C., Wongpichedchai, L., Corrado, G. S., Peng, L. & Webster, D. R.
npj Digit Med 2, 25 (2019).
-
Publications
Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic RetinopathySayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., Krause, J., Narayanaswamy, A., Rastegar, Z., Wu, D., Xu, S., Barb, S., Joseph, A., Shumski, M., Smith, J., Sood, A. B., Corrado, G. S., Peng, L. & Webster, D. R.
Ophthalmology 126, 552–564 (2019).
-
Publications
Clinically applicable deep learning for diagnosis and referral in retinal diseaseFauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., Hughes, C.O., Raine, R., Hughes, J., Sim, D. A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back, T., Khaw, P.T., Suleyman, M., Cornebise, J., Keane, P.A., & Ronneberger, O.
Nat. Med. 24, 1342–1350 (2018). [readcube]
-
Publications
Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic RetinopathyKrause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G. S., Peng, L., & Webster, D.R.
Ophthalmology 125, 1264–1272 (2018).
-
Publications
Blind spots in telemedicine: a qualitative study of staff workarounds to resolve gaps in diabetes managementBouskill, K., Smith-Morris, C., Bresnick, G., Cuadros, J. & Pedersen, E. R.
BMC Health Services Research 18, (2018).
-
Publications
Diabetic Retinopathy and the Cascade into Vision LossSmith-Morris, C., Bresnick, G. H., Cuadros, J., Bouskill, K. E. & Pedersen, E. R.
Med. Anthropol. 39, 109–122 (2018).
-
Publications
Who Said What: Modeling Individual Labelers Improves ClassificationGuan, M., Gulshan, V., Dai, A, Hinton, G.
AAAI Conference on Artificial Intelligence (2018).
-
Publications
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsGulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Ramasamy, K., Nelson, P., Mega, J., & Webster, D.
JAMA 316, 2402–2410 (2016).
-
Blog Posts
An ML-Based Framework for COVID-19 Epidemiologyby Joel Shor & Sercan Arik
Google AI Blog | 13-Oct-2021
-
Blog Posts
Google Cloud, Harvard Global Health Institute release improved COVID-19 Public Forecasts, share lessons learnedby Tomas Pfister
Google Cloud Blog | 15-Nov-2020
-
Blog Posts
Google Cloud AI and Harvard Global Health Institute Collaborate on new COVID-19 forecasting modelby Dario Sava
Google Cloud Blog | 3-Aug-2020
-
Publications
Algorithmic fairness in pandemic forecasting: lessons from COVID-19Tsai, T. C., Arik, S., Jacobson, B. H., Yoon, J., Yoder, N., Sava, D., Mitchell, M., Graham, G. & Pfister, T.
NPJ Digit Med 5, 59 (2022).
-
Publications
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United StatesCramer, E. Y., Ray, E. L., Lopez, V. K., Bracher, J., Brennen, A., Castro Rivadeneira, A. J., Gerding, A., Gneiting, T., House, K. H., Huang, Y., Jayawardena, D., Kanji, A. H., Khandelwal, A., Le, K., Mühlemann, A., Niemi, J., Shah, A., Stark, A., Wang, Y., Wattanachit, N., Zorn, M. W., Gu, Y., Jain, S., Bannur, N., Deva, A., Kulkarni, M., Merugu, S., Raval, A., Shingi, S., Tiwari, A., White, J., Abernethy, N. F., Woody, S., Dahan, M., Fox, S., Gaither, K., Lachmann, M., Meyers, L. A., Scott, J. G., Tec, M., Srivastava, A., George, G. E., Cegan, J. C., Dettwiller, I. D., England, W. P., Farthing, M. W., Hunter, R. H., Lafferty, B., Linkov, I., Mayo, M. L., Parno, M. D., Rowland, M. A., Trump, B. D., Zhang-James, Y., Chen, S., Faraone, S. V., Hess, J., Morley, C. P., Salekin, A., Wang, D., Corsetti, S. M., Baer, T. M., Eisenberg, M. C., Falb, K., Huang, Y., Martin, E. T., McCauley, E., Myers, R. L., Schwarz, T., Sheldon, D., Gibson, G. C., Yu, R., Gao, L., Ma, Y., Wu, D., Yan, X., Jin, X., Wang, Y.-X., Chen, Y., Guo, L., Zhao, Y., Gu, Q., Chen, J., Wang, L., Xu, P., Zhang, W., Zou, D., Biegel, H., Lega, J., McConnell, S., Nagraj, V. P., Guertin, S. L., Hulme-Lowe, C., Turner, S. D., Shi, Y., Ban, X., Walraven, R., Hong, Q.-J., Kong, S., van de Walle, A., Turtle, J. A., Ben-Nun, M., Riley, S., Riley, P., Koyluoglu, U., DesRoches, D., Forli, P., Hamory, B., Kyriakides, C., Leis, H., Milliken, J., Moloney, M., Morgan, J., Nirgudkar, N., Ozcan, G., Piwonka, N., Ravi, M., Schrader, C., Shakhnovich, E., Siegel, D., Spatz, R., Stiefeling, C., Wilkinson, B., Wong, A., Cavany, S., España, G., Moore, S., Oidtman, R., Perkins, A., Kraus, D., Kraus, A., Gao, Z., Bian, J., Cao, W., Lavista Ferres, J., Li, C., Liu, T.-Y., Xie, X., Zhang, S., Zheng, S., Vespignani, A., Chinazzi, M., Davis, J. T., Mu, K., Pastore Y Piontti, A., Xiong, X., Zheng, A., Baek, J., Farias, V., Georgescu, A., Levi, R., Sinha, D., Wilde, J., Perakis, G., Bennouna, M. A., Nze-Ndong, D., Singhvi, D., Spantidakis, I., Thayaparan, L., Tsiourvas, A., Sarker, A., Jadbabaie, A., Shah, D., Della Penna, N., Celi, L. A., Sundar, S., Wolfinger, R., Osthus, D., Castro, L., Fairchild, G., Michaud, I., Karlen, D., Kinsey, M., Mullany, L. C., Rainwater-Lovett, K., Shin, L., Tallaksen, K., Wilson, S., Lee, E. C., Dent, J., Grantz, K. H., Hill, A. L., Kaminsky, J., Kaminsky, K., Keegan, L. T., Lauer, S. A., Lemaitre, J. C., Lessler, J., Meredith, H. R., Perez-Saez, J., Shah, S., Smith, C. P., Truelove, S. A., Wills, J., Marshall, M., Gardner, L., Nixon, K., Burant, J. C., Wang, L., Gao, L., Gu, Z., Kim, M., Li, X., Wang, G., Wang, Y., Yu, S., Reiner, R. C., Barber, R., Gakidou, E., Hay, S. I., Lim, S., Murray, C., Pigott, D., Gurung, H. L., Baccam, P., Stage, S. A., Suchoski, B. T., Prakash, B. A., Adhikari, B., Cui, J., Rodríguez, A., Tabassum, A., Xie, J., Keskinocak, P., Asplund, J., Baxter, A., Oruc, B. E., Serban, N., Arik, S. O., Dusenberry, M., Epshteyn, A., Kanal, E., Le, L. T., Li, C.-L., Pfister, T., Sava, D., Sinha, R., Tsai, T., Yoder, N., Yoon, J., Zhang, L., Abbott, S., Bosse, N. I., Funk, S., Hellewell, J., Meakin, S. R., Sherratt, K., Zhou, M., Kalantari, R., Yamana, T. K., Pei, S., Shaman, J., Li, M. L., Bertsimas, D., Skali Lami, O., Soni, S., Tazi Bouardi, H., Ayer, T., Adee, M., Chhatwal, J., Dalgic, O. O., Ladd, M. A., Linas, B. P., Mueller, P., Xiao, J., Wang, Y., Wang, Q., Xie, S., Zeng, D., Green, A., Bien, J., Brooks, L., Hu, A. J., Jahja, M., McDonald, D., Narasimhan, B., Politsch, C., Rajanala, S., Rumack, A., Simon, N., Tibshirani, R. J., Tibshirani, R., Ventura, V., Wasserman, L., O’Dea, E. B., Drake, J. M., Pagano, R., Tran, Q. T., Ho, L. S. T., Huynh, H., Walker, J. W., Slayton, R. B., Johansson, M. A., Biggerstaff, M. & Reich, N. G.
Proc. Natl. Acad. Sci. U. S. A. 119, e2113561119 (2022).
-
Publications
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and JapanArık, S. Ö., Shor, J., Sinha, R., Yoon, J., Ledsam, J. R., Le, L. T., Dusenberry, M. W., Yoder, N. C., Popendorf, K., Epshteyn, A., Euphrosine, J., Kanal, E., Jones, I., Li, C.-L., Luan, B., Mckenna, J., Menon, V., Singh, S., Sun, M., Ravi, A. S., Zhang, L., Sava, D., Cunningham, K., Kayama, H., Tsai, T., Yoneoka, D., Nomura, S., Miyata, H. & Pfister, T.
NPJ Digit Med 4, 146 (2021).
-
Publications
Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural NetworksKapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M. & O’Banion, S.
arXiv [cs.LG] (2020).
-
Publications
Interpretable Sequence Learning for Covid-19 ForecastingArik, Li, Yoon, Sinha, Epshteyn, Le, Menon, Singh, Zhang, Nikoltchev, Sonthalia, Nakhost, Kanal & Pfister.
Adv. Neural Inf. Process. Syst. 2020.
-
Blog Posts
Enhanced Sleep Sensing in Nest Hubby Michael Dixon & Reena Singhal Lee
Google AI Blog | 9-Nov-2021
-
Blog Posts
Need a better night’s sleep? Meet the new Nest Hubby Ashton Udall
Google Keyword Blog | 16-Mar-2021
-
Blog Posts
Contactless Sleep Sensing in Nest Hubby Michael Dixon & Reena Singhal Lee
Google AI Blog | 16-Mar-2021
-
Blog Posts
Take a pulse on health and wellness with your phoneby Shwetak Patel
Google Keyword Blog | 4-Feb-2021
-
Publications
Prospective validation of smartphone-based heart rate and respiratory rate measurement algorithmsBae, S., Borac, S., Emre, Y., Wang, J., Wu, J., Kashyap, M., Kang, S.-H., Chen, L., Moran, M., Cannon, J., Teasley, E. S., Chai, A., Liu, Y., Wadhwa, N., Krainin, M., Rubinstein, M., Maciel, A., McConnell, M. V., Patel, S., Corrado, G. S., Taylor, J. A., Zhan, J. & Po, M. J.
bioRxiv (2021).
-
Publications
Sleep-wake Detection With a Contactless, Bedside Radar Sleep Sensing SystemDixon, M., Schneider, L. D., Yu, J., Hsu, J., Pathak, A., Shin, D., Lee, R. S., Malhotra, M., Mixter, K., McConnell, M. V., Taylor, J. A., Patel, S. N.,
Google Whitepaper (2021).
-
Blog Posts [more at Fitbit Blog]
Google Pixel Watch: Help by Google, health by Fitbitby Sandeep Waraich
Google Keyword Blog | 6-Oct-2022
-
Blog Posts
8 things to try now on Fitbit Sense 2 and Versa 4by TJ Varghese
Google Keyword Blog | 29-Sep-2022
-
Blog Posts
Kick-start your fitness routine with Fitbit Inspire 3by The Fitbit Team
Google Keyword Blog | 24-Aug-2022
-
Blog Posts
Fitbit’s fall lineup: helping you live your healthiest lifeby TJ Varghese
Google Keyword Blog | 24-Aug-2022
-
Blog Posts
Manage your health and fitness with Fitbit Versa 4 and Sense 2by The Fitbit Team
Google Keyword Blog | 24-Aug-2022
-
Blog Posts
Improve your ZZZs with Fitbit Premium Sleep Profileby The Fitbit Team
Google Keyword Blog | 22-Jun-2022
-
Blog Posts
New Fitbit feature makes AFib detection more accessibleby The Fitbit Team
Google Keyword Blog | 11-Apr-2022
-
Publications
Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart StudyLubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S. J., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos, A. & Foulkes, A. S.
Circulation (2022).
-
Publications
Occurrence of Relative Bradycardia and Relative Tachycardia in Individuals Diagnosed With COVID-19Natarajan, A., Su, H.-W. & Heneghan, C.
Front. Physiol. 13, 898251 (2022).
-
Publications
Measurement of respiratory rate using wearable devices and applications to COVID-19 detectionNatarajan, A., Su, H.-W., Heneghan, C., Blunt, L., O’Connor, C. & Niehaus, L.
NPJ Digit Med 4, 136 (2021).
-
Blog Posts
A new genome sequencing tool powered with our technologyby Andrew Caroll
Google Keyword Blog | 26-Oct-2022
-
Blog Posts [more at DeepVariant Blog]
Advancing genomics to better understand and treat diseaseby Andrew Carroll & Pi-Chuan Chang
Google Keyword Blog | 13-Jan-2022
-
Blog Posts
DeepNull: an open-source method to improve the discovery power of genetic association studiesby Farhad Hormozdiari & Andrew Carroll
Google Open Source Blog | 11-Jan-2022
-
Blog Posts
Improving Genomic Discovery with Machine Learningby Andrew Carroll & Cory McLean
Google AI Blog | 23-Jun-2021
-
Blog Posts
Improving the Accuracy of Genomic Analysis with DeepVariant 1.0by Andrew Carroll & Pi-Chuan Chang
Google AI Blog | 18-Sep-2020
-
Blog Posts
DeepVariant Accuracy Improvements for Genetic Datatypesby Pi-Chuan Chang & Lizzie Dorfman
Google AI Blog | 19-Apr-2018
-
Blog Posts
DeepVariant: Highly Accurate Genomes With Deep Neural Networksby Mark DePristo & Ryan Poplin
Google AI Blog | 4-Dec-2017
-
Blog Posts
An AI Resident at work: Suhani Vora and her work on genomicsby Phing Lee
Google Keyword Blog | 17-Nov-2017
-
Publications
Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencingGoenka, S. D., Gorzynski, J. E., Shafin, K., Fisk, D. G., Pesout, T., Jensen, T. D., Monlong, J., Chang, P.-C., Baid, G., Bernstein, J. A., Christle, J. W., Dalton, K. P., Garalde, D. R., Grove, M. E., Guillory, J., Kolesnikov, A., Nattestad, M., Ruzhnikov, M. R. Z., Samadi, M., Sethia, A., Spiteri, E., Wright, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
Nat. Biotechnol. (2022).
-
Publications
Ultrarapid Nanopore Genome Sequencing in a Critical Care SettingGorzynski, J. E., Goenka, S. D., Shafin, K., Jensen, T. D., Fisk, D. G., Grove, M. E., Spiteri, E., Pesout, T., Monlong, J., Baid, G., Bernstein, J. A., Ceresnak, S., Chang, P.-C., Christle, J. W., Chubb, H., Dalton, K. P., Dunn, K., Garalde, D. R., Guillory, J., Knowles, J. W., Kolesnikov, A., Ma, M., Moscarello, T., Nattestad, M., Perez, M., Ruzhnikov, M. R. Z., Samadi, M., Setia, A., Wright, C., Wusthoff, C. J., Xiong, K., Zhu, T., Jain, M., Sedlazeck, F. J., Carroll, A., Paten, B. & Ashley, E. A.
N. Engl. J. Med. (2022).
-
Publications
Pangenomics enables genotyping of known structural variants in 5202 diverse genomesSirén, J., Monlong, J., Chang, X., Novak, A. M., Eizenga, J. M., Markello, C., Sibbesen, J. A., Hickey, G., Chang, P.-C., Carroll, A., Gupta, N., Gabriel, S., Blackwell, T. W., Ratan, A., Taylor, K. D., Rich, S. S., Rotter, J. I., Haussler, D., Garrison, E. & Paten, B.
Science 374 (2021).
-
Publications
DeepNull models non-linear covariate effects to improve phenotypic prediction and association powerMcCaw, Z. R., Colthurst, T., Yun, T., Furlotte, N. A., Carroll, A., Alipanahi, B., McLean, C. Y. & Hormozdiari, F.
Nat. Commun. 13, 241 (2022).
-
Publications
A population-specific reference panel for improved genotype imputation in African AmericansO’Connell, J., Yun, T., Moreno, M., Li, H., Litterman, N., Kolesnikov, A., Noblin, E., Chang, P.-C.,Shastri, A., Dorfman, E. H., Shringarpure, S., Auton, A., Carroll, A. & McLean, C. Y.
Communications Biology 4, 1–9 (2021).
-
Publications
Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-readsShafin, K., Pesout, T., Chang, P.-C., Nattestad, M., Kolesnikov, A., Goel, S., Baid, G., Kolmogorov, M., Eizenga, J. M., Miga, K. H., Carnevali, P., Jain, M., Carroll, A. & Paten, B.
Nat. Methods 18, 1322–1332 (2021). [readcube]
-
Publications
DeepConsensus: Gap-Aware Sequence Transformers for Sequence CorrectionBaid, G., Cook, D. E., Shafin, K., Yun, T., Llinares-López, F., Berthet, Q., Wenger, A. M., Rowell, W. J., Nattestad, M., Yang, H., Kolesnikov, A., Töpfer, A., Ammar, W., Vert, J.-P., Vaswani, A., McLean, C. Y., Chang, P.-C. & Carroll, A.
bioRxiv 2021.08.31.458403 (2021).
-
Publications
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphologyAlipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Foster, P. J., Peng, L. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
Am. J. Hum. Genet. (2021).
-
Publications
Accurate, scalable cohort variant calls using DeepVariant and GLnexusYun, T., Li, H., Chang, P-C., Lin, M., Carroll, A., & McLean, C. Y.
Bioinformatics 36, 5582-5589 (2021).
-
Publications
SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic RegressionYadlowsky, S., Yun, T., McLean, C. & D’Amour, A.
arXiv [stat.ML] (2021).
-
Publications
Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphologyAlipanahi, B., Hormozdiari, F., Behsaz, B., Cosentino, J., McCaw, Z. R., Schorsch, E., Sculley, D., Dorfman, E. H., Phene, S., Hammel, N., Carroll, A., Khawaja, A. P. & McLean, C. Y.
arXiv [q-bio.GN] (2020).
-
Publications
GenomeWarp: an alignment-based variant coordinate transformationMcLean, C. Y., Hwang, Y., Poplin, R. & DePristo, M. A.
Bioinformatics 35, 4389–4391 (2019).
-
Publications
Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeWenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, M., Mahmoud, M., Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C., Myers, G., DePristo, M. A., Ruan, J., Marschall, T., Sedlazeck, F. J., Zook, J. M., Li, H., Koren, S., Carroll, A., Rank, D. R. & Hunkapiller, M. W.
Nat. Biotechnol. 37, 1155–1162 (2019). [readcube]
-
Publications
A universal SNP and small-indel variant caller using deep neural networksPoplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y. & DePristo, M. A.
Nat. Biotechnol. 36, 983–987 (2018). [readcube]
-
Publications
Deep learning of genomic variation and regulatory network dataTelenti, A., Lippert, C., Chang, P.-C. & DePristo, M.
Hum. Mol. Genet. 27, R63–R71 (2018).
-
Publications
Sequential regulatory activity prediction across chromosomes with convolutional neural networksKelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., McLean, C. Y. & Snoek, J.
Genome Res. 28, 739–750 (2018).
-
Blog Posts
Joint Speech Recognition and Speaker Diarization via Sequence Transductionby Laurent El Shafey and Izhak Shafran
16-Aug-2019
-
Blog Posts
How AI can improve products for people with impaired speechby Julie Cattiau
Google Keyword Blog | 7-May-2019
-
Blog Posts
Understanding Medical Conversationsby Katherine Chou and Chung-Cheng Chiu
Google AI Blog | 21-Nov-2017
-
Publications
Medical Scribe: Corpus Development and Model Performance AnalysesShafran, I., Du, N., Tran, L., Perry, A., Keyes, L., Knichel, M., Domin, A., Huang, L., Chen, Y., Li, G., Wang, M., El Shafey, L., Soltau, H. & Paul, J. S.
Proceedings of the Language Resources and Evaluation Conference. arXiv [cs.CL] (2020).
-
Publications
Extracting Symptoms and their Status from Clinical ConversationsDu, N., Chen, K., Kannan, A., Tran, L., Chen, Y. & Shafran, I.
Proceedings of the Annual Meeting of the Association of Computational Linguistics. arXiv [cs.LG] (2019).
-
Publications
Automatically Charting Symptoms From Patient-Physician Conversations Using Machine LearningRajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., & Dean, J.
JAMA Intern. Med. 179, 836–838 (2019).
-
Publications
Joint Speech Recognition and Speaker Diarization via Sequence TransductionEl Shafey, L., Soltau, H. & Shafran, I.
Proceedings of Interspeech. arXiv [cs.CL] (2019).
-
Publications
Learning to Infer Entities, Properties and their Relations from Clinical ConversationsDu, N., Wang, M., Tran, L., Li, G. & Shafran, I.
Proc. Empirical Methods in Natural Language Processing. arXiv [cs.CL] (2019).
-
Publications
Speech recognition for medical conversationsChiu, C.-C., Tripathi, A., Chou, K., Co, C., Jaitly, N., Jaunzeikare, D., Kannan, A., Nguyen, P., Sak, H., Sankar, A., Tansuwan, J., Wan, N., Wu, Y., & Zhang X.
arXiv [cs.CL] (2017).
-
Blog Posts
Multi-task Prediction of Organ Dysfunction in ICUsby Subhrajit Roy & Diana Mincu
Google AI Blog | 22-Jul-2021
-
Blog Posts
A Step Towards Protecting Patients from Medication Errorsby Kathryn Rough & Alvin Rajkomar
Google AI Blog | 2-Apr-2020
-
Blog Posts
Expanding the Application of Deep Learning to Electronic Health Recordsby Alvin Rajkomar & Eyal Oren
Google AI Blog | 22-Jan-2019
-
Blog Posts
Scaling Streams with Googleby Demis Hassabis & Mustafa Suleyman & Dominic King
DeepMind Blog | 13-Nov-2018
-
Blog Posts
Deep Learning for Electronic Health Recordsby Alvin Rajkomar & Eyal Oren
Google AI Blog | 8-May-2018
-
Blog Posts
Making Healthcare Data Work Better with Machine Learningby Patrik Sundberg & Eyal Oren
Google AI Blog | 2-Mar-2018
-
Publications
Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routingRoy, S., Mincu, D., Loreaux, E., Mottram, A., Protsyuk, I., Harris, N., Xue, Y., Schrouff, J., Montgomery, H., Connell, A., Tomasev, N., Karthikesalingam, A. & Seneviratne, M.
J. Am. Med. Inform. Assoc. (2021).
-
Publications
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health recordsTomašev, N., Harris, N., Baur, S., Mottram, A., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Magliulo, V., Meyer, C., Ravuri, S., Protsyuk, I., Connell, A., Hughes, C. O., Karthikesalingam, A., Cornebise, J., Montgomery, H., Rees, G., Laing, C., Baker, C. R., Osborne, T. F., Reeves, R., Hassabis, D., King, D., Suleyman, M., Back, T., Nielson, C., Seneviratne, M. G., Ledsam, J. R. & Mohamed, S.
Nat. Protoc. 1–23 (2021). [readcube]
-
Publications
Learning to Select Best Forecast Tasks for Clinical Outcome PredictionXue Y, Du N, Mottram A, Seneviratne A, Dai AM.
NeurIPS (2020).
-
Publications
Deep State-Space Generative Model For Correlated Time-to-Event PredictionsXue Y, Zhou D, Du N, Dai A, Xu Z, Zhang K, Cui C.
KDD (2020).
-
Publications
Graph convolutional transformer: Learning the graphical structure of electronic health recordsChoi E, Xu Z, Li Y, Dusenberry MW, Flores G, Xue Y, Dai AM.
AAAI (2020).
-
Publications
Analyzing the role of model uncertainty for electronic health recordsDusenberry MW, Tran D, Choi E, Kemp J, Nixon J, Jerfel G, Heller K, & Dai AM.
ACM CHIL (2020).
-
Publications
Explaining an increase in predicted risk for clinical alertsHardt M, Rajkomar A, Flores G, Dai A, Howell M, Corrado G, Cui C, & Hardt M.
ACM CHIL (2020).
-
Publications
Predicting inpatient medication orders from electronic health record dataRough, K., Dai, A. M., Zhang, K., Xue, Y., Vardoulakis, L. M., Cui, C., Butte, A. J., Howell, M. D. & Rajkomar, A.
Clin. Pharmacol. Ther. 108, 145–154 (2020).
-
Publications
A clinically applicable approach to continuous prediction of future acute kidney injuryTomašev, N., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., Mottram, A., Meyer, C., Ravuri, S., Protsyuk, I., Connell, A., Hughes, C. O., Karthikesalingam, A., Cornebise, J., Montgomery, H., Rees, G., Laing, C., Baker, C. R., Peterson, K., Reeves, R., Hassabis, D., King, D., Suleyman, M., Back, T., Nielson, C., Ledsam, J. R. & Mohamed, S.
Nature 572, 116–119 (2019). [readcube]
-
Publications
Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissionsConnell, A., Montgomery, H., Martin, P., Nightingale, C., Sadeghi-Alavijeh, O., King, D., Karthikesalingam, A., Hughes, C., Back, T., Ayoub, K., Suleyman, M., Jones, G., Cross, J., Stanley, S., Emerson, M., Merrick, C., Rees, G., Laing, C. & Raine, R.
npj Digit Med 2, 67 (2019).
-
Publications
Implementation of a Digitally Enabled Care Pathway (Part 1): Impact on Clinical Outcomes and Associated Health Care CostsConnell A., Raine R., Martin P., Barbosa E.C., Morris S., Nightingale C., Sadeghi-Alavijeh O., King D., Karthikesalingam A., Hughes C., Back T., Ayoub K., Suleyman M., Jones G., Cross J., Stanley S., Emerson M., Merrick C., Rees G., Montgomery H., & Laing C.
J Med Internet Res 21(7):e13147 (2019).
-
Publications
Implementation of a Digitally Enabled Care Pathway (Part 2): Qualitative Analysis of Experiences of Health Care ProfessionalsConnell A, Black G, Montgomery H, Martin P, Nightingale C, King D, Karthikesalingam A, Hughes C, Back T, Ayoub K, Suleyman M, Jones G, Cross J, Stanley S, Emerson M, Merrick C, Rees G, Laing C, & Raine R.
J Med Internet Res 21(7):e13143 (2019).
-
Publications
Improved Patient Classification with Language Model Pretraining Over Clinical NotesKemp J, Rajkomar A, & Dai AM.
arXiv [cs.LG] (2019).
-
Publications
Federated and Differentially Private Learning for Electronic Health RecordsPfohl SR, Dai AM, & Heller K.
arXiv [cs.LG] (2019).
-
Publications
Deep Physiological State Space Model for Clinical ForecastingXue Y, Zhou D, Du N, Dai AM, Xu Z, Zhang K,& Cui C.
arXiv [cs.LG] (2019).
-
Publications
Modelling EHR timeseries by restricting feature interactionZhang K, Xue Y, Flores G, Rajkomar A, Cui C, & Dai AM.
arXiv [cs.LG] (2019).
-
Publications
Scalable and accurate deep learning with electronic health recordsRajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J.
npj Digital Med 1, 18 (2018).
-
Blog Posts
Expanding research on digital wellbeingby Nicholas Allen
Google Keyword Blog | 23-May-2022
-
Blog Posts
Advancing health research with Google Health Studiesby Jon Morgan & Paul Eastham
Google Keyword Blog | 9-Dec-2020
-
Blog Posts
How AI could predict sight-threatening eye conditionsby Terry Spitz & Jim Winkens
Google Keyword Blog | 18-May-2020
-
Blog Posts
Using AI to predict retinal disease progressionby Jason Yim, Reena Chopra, Jeffrey De Fauw & Joseph Ledsam
DeepMind Blog | 18-May-2020
-
Blog Posts
Detecting hidden signs of anemia from the eyeby Akinori Mitani
Google Keyword Blog | 28-Jan-2020
-
Blog Posts
Assessing Cardiovascular Risk Factors with Computer Visionby Lily Peng
Google AI Blog | 2-Feb-2018
-
Publications
Retinal fundus photographs capture hemoglobin loss after blood donationMitani, A., Traynis, I., Singh, P., Corrado, G. S., Webster, D. R., Peng, L. H., Varadarajan, A. V., Liu, Y. & Hammel, N.
doi:10.1101/2021.12.30.21268488
-
Publications
Predicting the risk of developing diabetic retinopathy using deep learningBora, A., Balasubramanian, S., Babenko, B., Virmani, S., Venugopalan, S., Mitani, A., de Oliveira Marinho, G., Cuadros, J., Ruamviboonsuk, P., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Hammel, N., Liu, Y. & Bavishi, P.
The Lancet Digital Health (2020). doi:10.1016/S2589-7500(20)30250-8
-
Publications
Quantitative analysis of optical coherence tomography for neovascular age-related macular degeneration using deep learningMoraes, G., Fu, D. J., Wilson, M., Khalid, H., Wagner, S. K., Korot, E., Ferraz, D., Faes, L., Kelly, C. J., Spitz, T., Patel, P. J., Balaskas, K., Keenan, T. D. L., Keane, P. A. & Chopra, R.
Ophthalmology (2020). doi:10.1016/j.ophtha.2020.09.025
-
Publications
Scientific Discovery by Generating Counterfactuals Using Image TranslationNarayanaswamy, A., Venugopalan, S., Webster, D. R., Peng, L., Corrado, G. S., Ruamviboonsuk, P., Bavishi, P., Brenner, M., Nelson, P. C. & Varadarajan, A. V.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 273–283 (2020). doi:10.1007/978-3-030-59710-8_27 arXiv
-
Publications
Predicting conversion to wet age-related macular degeneration using deep learningYim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., Moraes, G., Meyer, C., Wilson, M., Dixon, J., Hughes, C., Rees, G., Khaw, P. T., Karthikesalingam, A., King, D., Hassabis, D., Suleyman, M., Back, T., Ledsam, J. R., Keane, P. A. & De Fauw, J.
Nat. Med. (2020). [readcube]
-
Publications
Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learningVaradarajan, A. V., Bavishi, P., Ruamviboonsuk, P., Chotcomwongse, P., Venugopalan, S., Narayanaswamy, A., Cuadros, J., Kanai, K., Bresnick, G., Tadarati, M., Silpa-Archa, S., Limwattanayingyong, J., Nganthavee, V., Ledsam, J. R., Keane, P. A., Corrado, G. S., Peng, L. & Webster, D. R.
Nat. Commun. 11, 130 (2020).
-
Publications
Detection of anaemia from retinal fundus images via deep learningMitani, A., Huang, A., Venugopalan, S., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N., Liu, Y. & Varadarajan, A. V.
Nat Biomed Eng (2019). [readcube]
-
Publications
Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep LearningBabenko, B., Balasubramanian, S., Blumer, K. E., Corrado, G. S., Peng, L., Webster, D. R., Hammel, N. & Varadarajan, A. V.
arXiv [cs.CV] (2019).
-
Publications
Deep Learning for Predicting Refractive Error From Retinal Fundus Imagesaradarajan, A.V., Poplin, R., Blumer, K., Angermueller, C., Lesdam, J., Chopra, R., Keane, P.A., Corrado, G. S., Peng, L., Webster, D. R.
Invest. Ophthalmol. Vis. Sci. 59, 2861–2868 (2018).
-
Publications
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learningPoplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., Peng, L., & Webster, D. R.
Nat. Biomed. Eng. 2, 158–164 (2018). [readcube]
-
Blog Posts
Verily and Lumea Announce Development Partnership to Advance Digital Pathology in Prostate CancerVerily Blog | 16-Mar-2022
-
Blog Posts
An International Scientific Challenge for the Diagnosis and Gleason Grading of Prostate Cancerby Po-Hsuan Cameron Chen & Maggie Demkin
Google AI Blog | 11-Feb-2022
-
Blog Posts
The promise of using AI to help prostate cancer careby Po-Hsuan Cameron Chen & Yun Liu
Google Keyword Blog | 23-Sept-2021
-
Blog Posts
PAIR @ CHI 2021by People + AI Research
People + AI Research Blog | 14-May-2021
-
Blog Posts
Learning from deep learning: developing interpretable AI approaches in histopathology to predict patient prognosis and explore novel featuresby Dave Steiner, Yun Liu, Craig Mermel, Kurt Zatloukal, Heimo Muller, Markus Plass
npj Digital Medicine Blog | 19-Apr-2021
-
Blog Posts
Defense Innovation Unit Selects Google Cloud to Help U.S. Military Health System with Predictive Cancer DiagnosesGoogle Cloud Blog | 2-Sep-2020
-
Blog Posts
Using AI to identify the aggressiveness of prostate cancerby Kunal Nagpal & Craig Mermel
Google Keyword Blog | 23-Jul-2020
-
Blog Posts
Generating Diverse Synthetic Medical Image Data for Training Machine Learning Modelsby Timo Kohlberger & Yuan Liu
Google AI Blog | 19-Feb-2020
-
Blog Posts
Building SMILY, a Human-Centric, Similar-Image Search Tool for Pathologyby Narayan Hedge & Carrie Cai
Google AI Blog | 19-July-2019
-
Blog Posts
Improved Grading of Prostate Cancer Using Deep Learningby Martin Stumpe & Craig Mermel
Google AI Blog | 16-Nov-2018
-
Blog Posts
Applying Deep Learning to Metastatic Breast Cancer Detectionby Martin Stumpe & Craig Mermel
Google AI Blog | 12-Oct-2018
-
Blog Posts
An Augmented Reality Microscope for Cancer Detectionby Martin Stumpe & Craig Mermel
Google AI Blog | 16-Apr-2018
-
Blog Posts
Assisting Pathologists in Detecting Cancer with Deep Learningby Martin Stumpe & Lily Peng
Google AI Blog | 3-Mar-2017
-
Publications
Deep learning models for histologic grading of breast cancer and association with disease prognosisJaroensri, R., Wulczyn, E., Hegde, N., Brown, T., Flament-Auvigne, I., Tan, F., Cai, Y., Nagpal, K., Rakha, E. A., Dabbs, D. J., Olson, N., Wren, J. H., Thompson, E. E., Seetao, E., Robinson, C., Miao, M., Beckers, F., Corrado, G. S., Peng, L. H., Mermel, C. H., Liu, Y., Steiner, D. F. & Chen, P.-H. C.
npj Breast Cancer 8, 1–12 (2022).
-
Publications
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challengeBulten, W., Kartasalo, K., Chen, P.-H. C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., Steiner, D. F., van Boven, H., Vink, R., Hulsbergen-van de Kaa, C., van der Laak, J., Amin, M. B., Evans, A. J., van der Kwast, T., Allan, R., Humphrey, P. A., Grönberg, H., Samaratunga, H., Delahunt, B., Tsuzuki, T., Häkkinen, T., Egevad, L., Demkin, M., Dane, S., Tan, F., Valkonen, M., Corrado, G. S., Peng, L., Mermel, C. H., Ruusuvuori, P., Litjens, G. & Eklund, M.
Nat. Med. 1–10 (2022).
-
Publications
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology imagesSadhwani, A., Chang, H.-W., Behrooz, A., Brown, T., Auvigne-Flament, I., Patel, H., Findlater, R., Velez, V., Tan, F., Tekiela, K., Wulczyn, E., Yi, E. S., Mermel, C. H., Hanks, D., Chen, P.-H. C., Kulig, K., Batenchuk, C., Steiner, D. F. & Cimermancic, P.
Sci. Rep. 11, 1–11 (2021).
-
Publications
Determining breast cancer biomarker status and associated morphological features using deep learningGamble, P., Jaroensri, R., Wang, H., Tan, F., Moran, M., Brown, T., Flament-Auvigne, I., Rakha, E. A., Toss, M., Dabbs, D. J., Regitnig, P., Olson, N., Wren, J. H., Robinson, C., Corrado, G. S., Peng, L. H., Liu, Y., Mermel, C. H., Steiner, D. F. & Chen, P.-H. C.
Communications Medicine 1, 1–12 (2021).
-
Publications
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason gradingWulczyn, E., Nagpal, K., Symonds, M., Moran, M., Plass, M., Reihs, R., Nader, F., Tan, F., Cai, Y., Brown, T., Flament-Auvigne, I., Amin, M. B., Stumpe, M. C., Müller, H., Regitnig, P., Holzinger, A., Corrado, G. S., Peng, L. H., Chen, P.-H. C., Steiner, D. F., Zatloukal, K., Liu, Y. & Mermel, C. H.
Communications Medicine 1, 1–8 (2021).
-
Publications
Onboarding Materials as Boundary Objects for Developing AI AssistantsCai, C.J., Steiner, D., Wilcox, L., Terry, M. and Winter, S.
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM (2021).
-
Publications
Interpretable survival prediction for colorectal cancer using deep learningWulczyn, E., Steiner, D. F., Moran, M., Plass, M., Reihs, R., Tan, F., Flament-Auvigne, I., Brown, T., Regitnig, P., Chen, P.-H. C., Hegde, N., Sadhwani, A., MacDonald, R., Ayalew, B., Corrado, G. S., Peng, L. H., Tse, D., Müller, H., Xu, Z., Liu, Y., Stumpe, M. C., Zatloukal, K. & Mermel, C. H.
npj Digital Medicine 4, 1–13 (2021).
-
Publications
Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate BiopsiesSteiner, D. F., Nagpal, K., Sayres, R., Foote, D. J., Wedin, B. D., Pearce, A., Cai, C. J., Winter, S. R., Symonds, M., Yatziv, L., Kapishnikov, A., Brown, T., Flament-Auvigne, I., Tan, F., Stumpe, M. C., Jiang, P.-P., Liu, Y., Chen, P.-H. C., Corrado, G. S., Terry, M. & Mermel, C. H.
JAMA Netw Open 3, e2023267–e2023267 (2020).
-
Publications
Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy SpecimensNagpal, K., Foote, D., Tan, F., Liu, Y., Chen, P.-H. C., Steiner, D. F., Manoj, N., Olson, N., Smith, J. L., Mohtashamian, A., Peterson, B., Amin, M. B., Evans, A. J., Sweet, J. W., Cheung, C., van der Kwast, T., Sangoi, A. R., Zhou, M., Allan, R., Humphrey, P. A., Hipp, J. D., Gadepalli, K., Corrado, G. S., Peng, L. H., Stumpe, M. C. & Mermel, C. H.
JAMA Oncol (2020).
-
Publications
Deep learning-based survival prediction for multiple cancer types using histopathology imagesWulczyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C. H., Chen, P.-H. C., Liu, Y. & Stumpe, M. C.
PLOS ONE 15, e0233678 (2020).
-
Publications
Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer DetectionKohlberger, T., Liu, Y., Moran, M., Chen, P.-H. C., Brown, T., Hipp, J. D., Mermel, C. H. & Stumpe, M. C.
J. Pathol. Inform. 10, 39 (2019).
-
Publications
An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosisChen, P.C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G.S., Hipp, J.D., Mermel, C.H., Stumpe, M. C.
Nat Med 25, 1453–1457 (2019). [readcube]
-
Publications
Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for PathologistsLiu, Y., Kohlberger, T., Norouzi, M., Dahl, G. E., Smith, J. L., Mohtashamian, A., Olson, N., Peng, L.H., Hipp, J.D., Stumpe, M.C. (2019).
Arch. Pathol. Lab. Med. 143, 859–868 (2019).
-
Publications
Similar image search for histopathology: SMILYHegde, N., Hipp, J. D., Liu, Y., Emmert-Buck, M., Reif, E., Smilkov, D., Terry, M., Cai, C. J., Amin, M. B., Mermel, C. H., Nelson, P. Q., Peng, L. H., Corrado, G. S. & Stumpe, M. C.
npj Digit Med 2, 56 (2019).
-
Publications
"Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-MakingCai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M.
Proceedings of the ACM on Human-computer Interaction, 3(CSCW), pp.1-24 (2019)
-
Publications
Human-centered tools for coping with imperfect algorithms during medical decision-makingCai, C.J., Reif, E., Hegde, N., Hipp, J., Kim, B., Smilkov, D., Wattenberg, M., Viegas, F., Corrado, G.S., Stumpe, M.C. and Terry, M.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-14) (2019).
-
Publications
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancerNagpal, K., Foote, D., Liu, Y., Chen, P.H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L., Mohtashamian, A., Wren, J.H., Corrado, G.S., MacDonald, R., Peng, L. H., Amin, M.B., Evans, A.J., Sanjoi, A.R., Mermel, C. H., Hipp, J. D., Stumpe, M. C.
npj Digit. Med. 2, 48 (2019).
-
Publications
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast CancerSteiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., Stumpe, M.C.
Am. J. Surg. Pathol. 42, 1636–1646 (2018).
-
Publications
Detecting cancer metastases on gigapixel pathology imagesLiu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S. and Hipp, J.D., Peng, L., Stumpe, M. C.
arXiv preprint arXiv:1703.02442 (2017).
-
Blog Posts
New Insights into Human Mobility with Privacy Preserving Aggregationby Adam Sadilek & Xerxes Dotiwalla
Google AI Blog | 12-Nov-2019
-
Publications
An evaluation of Internet searches as a marker of trends in population mental health in the USVaidyanathan, U., Sun, Y., Shekel, T., Chou, K., Galea, S., Gabrilovich, E. & Wellenius, G. A.
Sci. Rep. 12, 8946 (2022). [readcube]
-
Publications
COVID-19 Open-Data a global-scale spatially granular meta-dataset for coronavirus diseaseWahltinez, O., Cheung, A., Alcantara, R., Cheung, D., Daswani, M., Erlinger, A., Lee, M., Yawalkar, P., Lê, P., Navarro, O. P., Brenner, M. P. & Murphy, K.
Sci Data 9, 162 (2022).
-
Publications
Google COVID-19 Vaccination Search Insights: Anonymization Process DescriptionBavadekar, S., Boulanger, A., Davis, J., Desfontaines, D., Gabrilovich, E., Gadepalli, K., Ghazi, B., Griffith, T., Gupta, J., Kamath, C., Kraft, D., Kumar, R., Kumok, A., Mayer, Y., Manurangsi, P., Patankar, A., Perera, I. M., Scott, C., Shekel, T., Miller, B., Smith, K., Stanton, C., Sun, M., Young, M. & Wellenius, G.
arXiv [cs.CR] (2021).
-
Publications
Early social distancing policies in Europe, changes in mobility & COVID-19 case trajectories: Insights from Spring 2020Woskie, L. R., Hennessy, J., Espinosa, V., Tsai, T. C., Vispute, S., Jacobson, B. H., Cattuto, C., Gauvin, L., Tizzoni, M., Fabrikant, A., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Stanton, C., Bavadekar, S., Abueg, M., Hogue, M., Oplinger, A., Chou, K., Corrado, G., Shekel, T., Jha, A. K., Wellenius, G. A. & Gabrilovich, E.
PLoS One 16, e0253071 (2021).
-
Publications
Impacts of social distancing policies on mobility and COVID-19 case growth in the USWellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Dai, A., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Mandayam, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B. H., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
Nat. Commun. 12, 3118 (2021).
-
Publications
Forecasting influenza activity using machine-learned mobility mapVenkatramanan, S., Sadilek, A., Fadikar, A., Barrett, C. L., Biggerstaff, M., Chen, J., Dotiwalla, X., Eastham, P., Gipson, B., Higdon, D., Kucuktunc, O., Lieber, A., Lewis, B. L., Reynolds, Z., Vullikanti, A. K., Wang, L. & Marathe, M.
Nat. Commun. 12, 726 (2021).
-
Publications
Global maps of travel time to healthcare facilitiesWeiss, D. J., Nelson, A., Vargas-Ruiz, C. A., Gligorić, K., Bavadekar, S., Gabrilovich, E., Bertozzi-Villa, A., Rozier, J., Gibson, H. S., Shekel, T., Kamath, C., Lieber, A., Schulman, K., Shao, Y., Qarkaxhija, V., Nandi, A. K., Keddie, S. H., Rumisha, S., Amratia, P., Arambepola, R., Chestnutt, E. G., Millar, J. J., Symons, T. L., Cameron, E., Battle, K. E., Bhatt, S. & Gething, P. W.
Nat. Med. (2020).
-
Publications
Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington stateAbueg, M., Hinch, R., Wu, N., Liu, L., Probert, W. J. M., Wu, A., Eastham, P., Shafi, Y., Rosencrantz, M., Dikovsky, M., Cheng, Z., Nurtay, A., Abeler-Dörner, L., Bonsall, D. G., McConnell, M. V., O’Banion, S. & Fraser, C.
medRxiv (2020). doi:10.1101/2020.08.29.20184135
-
Publications
Google COVID-19 Search Trends Symptoms Dataset: Anonymization Process Description (version 1.0)Bavadekar, S., Dai, A., Davis, J., Desfontaines, D., Eckstein, I., Everett, K., Fabrikant, A., Flores, G., Gabrilovich, E., Gadepalli, K., Glass, S., Huang, R., Kamath, C., Kraft, D., Kumok, A., Marfatia, H., Mayer, Y., Miller, B., Pearce, A., Perera, I. M., Ramachandran, V., Raman, K., Roessler, T., Shafran, I., Shekel, T., Stanton, C., Stimes, J., Sun, M., Wellenius, G. & Zoghi, M.
arXiv [cs.CR] (2020).
-
Publications
Impacts of State-Level Policies on Social Distancing in the United States Using Aggregated Mobility Data during the COVID-19 PandemicWellenius, G. A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T. C., Hennessy, J., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., Jacobson, B., Armstrong, Z., Gipson, B., Wilson, R., Widdowson, A., Chou, K., Oplinger, A., Shekel, T., Jha, A. K. & Gabrilovich, E.
arXiv [q-bio.PE] (2020).
-
Publications
Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.0)Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C., Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T., Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B. & Wilson, R. J.
arXiv [cs.CR] (2020).
-
Publications
Assessing the impact of coordinated COVID-19 exit strategies across EuropeRuktanonchai, N. W., Floyd, J. R., Lai, S., Ruktanonchai, C. W., Sadilek, A., Rente-Lourenco, P., Ben, X., Carioli, A., Gwinn, J., Steele, J. E., Prosper, O., Schneider, A., Oplinger, A., Eastham, P. & Tatem, A. J.
Science 369, 1465–1470 (2020).
-
Publications
Lymelight: forecasting Lyme disease risk using web search dataSadilek, A., Hswen, Y., Bavadekar, S., Shekel, T., Brownstein, J. S. & Gabrilovich, E.
npj Digital Medicine 3, 1–12 (2020).
-
Publications
Hierarchical organization of urban mobility and its connection with city livabilityBassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gallotti, R., Ghoshal, G., Gipson, B., Hazarie, S. A., Kautz, H., Kucuktunc, O., Lieber, A., Sadilek, A., & Ramasco, J. J.
Nat. Commun. 10, 4817 (2019).
-
Publications
Machine-learned epidemiology: real-time detection of foodborne illness at scaleSadilek, A., Caty, S., DiPrete, L., Mansour, R., Schenk Jr., T., Bergtholdt, M., Jha, A., Ramaswami P., & Gabrilovich E.
npj Digital Med 1, 36 (2018).
-
Blog Posts
Simplified Transfer Learning for Chest Radiography Model Developmentby Akib Uddin & Andrew Sellergren
Google AI Blog | 19-Jul-2022
-
Blog Posts
Mammography collaboration in JapanGoogle Japan Blog | 25-Nov-2021
-
Blog Posts
Detecting Abnormal Chest X-rays using Deep Learningby Zaid Nabulsi & Po-Hsuan Cameron Chen
Google AI Blog | 1-Sep-2021
-
Blog Posts
Tackling tuberculosis screening with AIby Rory Pilgrim & Shruthi Prabhakara
Google Keyword Blog | 18-May-2021
-
Blog Posts
Using artificial intelligence in breast cancer screeningby Sunny Jansen & Krish Eswaran
Google Keyword Blog | 25-Feb-2021
-
Blog Posts
Exploring AI for radiotherapy planning with Mayo Clinicby Cian Hughes
Google Keyword Blog | 29-Oct-2020
-
Blog Posts
Using AI to improve breast cancer screeningby Shravya Shetty & Daniel Tse
Google Keyword Blog | 1-Jan-2020
-
Blog Posts
Developing Deep Learning Models for Chest X-rays with Adjudicated Image Labelsby Dave Steiner & Shravya Shetty
Google AI Blog | 3-Dec-2019
-
Blog Posts
A promising step forward for predicting lung cancerby Shravya Shetty
Google Keyword Blog | 20-May-2019
-
Publications
A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessmentGomes, R. G., Vwalika, B., Lee, C., Willis, A., Sieniek, M., Price, J. T., Chen, C., Kasaro, M. P., Taylor, J. A., Stringer, E. M., McKinney, S. M., Sindano, N., Dahl, G. E., Goodnight, W., Gilmer, J., Chi, B. H., Lau, C., Spitz, T., Saensuksopa, T., Liu, K., Tiyasirichokchai, T., Wong, J., Pilgrim, R., Uddin, A., Corrado, G., Peng, L., Chou, K., Tse, D., Stringer, J. S. A. & Shetty, S.
Communications Medicine 2, 1–9 (2022).
-
Publications
Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of RadiologistsKazemzadeh, S., Yu, J., Jamshy, S., Pilgrim, R., Nabulsi, Z., Chen, C., Beladia, N., Lau, C., McKinney, S. M., Hughes, T., Kiraly, A. P., Kalidindi, S. R., Muyoyeta, M., Malemela, J., Shih, T., Corrado, G. S., Peng, L., Chou, K., Chen, P.-H. C., Liu, Y., Eswaran, K., Tse, D., Shetty, S. & Prabhakara, S.
Radiology 212213 (2022).
-
Publications
Simplified Transfer Learning for Chest Radiography Models Using Less DataSellergren, A. B., Chen, C., Nabulsi, Z., Li, Y., Maschinot, A., Sarna, A., Huang, J., Lau, C., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Liu, Y., Eswaran, K., Tse, D., Beladia, N., Krishnan, D. & Shetty, S.
Radiology 212482 (2022).
-
Publications
Study Design: Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planningAnand, A., Beltran, C. J., Brooke, M. D., Buroker, J. R., DeWees, T. A., Foote, R. L., Foss, O. R., Hughes, C. O., Hunzeker, A. E., John Lucido, J., Morigami, M., Moseley, D. J., Pafundi, D. H., Patel, S. H., Patel, Y., Ridgway, A. K., Tryggestad, E. J., Wilson, M. Z., Xi, L. & Zverovitch, A.
medRxiv 2021.12.07.21266421 (2021).
-
Publications
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19Nabulsi, Z., Sellergren, A., Jamshy, S., Lau, C., Santos, E., Kiraly, A. P., Ye, W., Yang, J., Pilgrim, R., Kazemzadeh, S., Yu, J., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Corrado, G. S., Peng, L., Eswaran, K., Tse, D., Beladia, N., Liu, Y., Chen, P.-H. C. & Shetty, S.
Sci. Rep. 11, 1–15 (2021).
-
Publications
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation StudyNikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., Patel, Y., Meyer, C., Askham, H., Romera-Paredes, B., Kelly, C., Karthikesalingam, A., Chu, C., Carnell, D., Boon, C., D’Souza, D., Moinuddin, S. A., Garie, B., McQuinlan, Y., Ireland, S., Hampton, K., Fuller, K., Montgomery, H., Rees, G., Suleyman, M., Back, T., Hughes, C. O., Ledsam, J. R. & Ronneberger, O.
J. Med. Internet Res. 23, e26151 (2021).
-
Publications
Improving reference standards for validation of AI-based radiographyDuggan, G. E., Reicher, J. J., Liu, Y., Tse, D. & Shetty, S.
Br J Radiol. 94, 20210435 (2021).
-
Publications
International evaluation of an AI system for breast cancer screeningMcKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., Melnick, D., Mostofi, H., Peng, L., Reicher, J. J., Romera-Paredes, B., Sidebottom, R., Suleyman, M., Tse, D., Young, K. C., De Fauw, J. & Shetty, S.
Nature 577, 89–94 (2020). [readcube]
-
Publications
Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted EvaluationMajkowska, A., Mittal, S., Steiner, D. F., Reicher, J. J., McKinney, S. M., Duggan, G. E., Eswaran, K., Cameron Chen, P.-H., Liu, Y., Kalidindi, S. R., Ding, A., Corrado, G. S., Tse, D. & Shetty, S.
Radiology 191293 (2019).
-
Publications
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyArdila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reciher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., Shetty, S.
Nat. Med. 25, 954–961 (2019). [readcube]